
Copyright © 2010 John Wiley & Sons, Ltd

Construction by replacement: a new approach to
simulation modeling
James Hines,a Thomas Malone,b Paulo Gonçalves,c* George Herman,d John Quimby,d
Mary Murphy-Hoye,e James Rice,f James Patteng and Hiroshi Ishiig

Abstract

Simulation modeling can be valuable in many areas of management science, but it is often costly, time-
consuming, and diffi cult to do. To reduce these problems, system dynamics researchers have previously
developed standard pieces of model structure, called molecules, that can be reused in different models.
However, the models assembled from these molecules often lacked feedback loops and generated few, if any,
insights. This paper describes a new and more promising approach to using molecules in system dynamics
modeling. The heart of the approach is a systematically organized library (or taxonomy) of predefi ned model
components, or molecules, and a set of software tools for replacing one molecule with another. Users start
with a simple generic model and progressively replace parts of the model with more specialized molecules
from a systematically organized library of predefi ned components. These substitutions either create a new
running model automatically or request further manual changes from the user. The paper describes our
exploration using this approach to construct system dynamics models of supply chain processes in a large
manufacturing company. The experiment included developing an innovative “tangible user interface” and
a comprehensive catalog of system dynamics molecules. The paper concludes with a discussion of the ben-
efi ts and limitations of this approach. Copyright © 2010 John Wiley & Sons, Ltd.

Syst. Dyn. Rev. (2009)

Introduction

Simulation models have been used with substantial success for decades in many areas
of management science, from factory scheduling to fi nancial forecasting, to supply
chain planning to market analysis. One of the most important barriers to wider use of
simulation modeling, however, is the diffi culty of creating simulation models in the
fi rst place. Developing useful models often requires experienced modelers as well as
signifi cant amounts of, time, money, and effort.

In an attempt to improve quality and reduce the resources needed for modeling,
system dynamics researchers (including Richardson and Pugh, 1981; Lyneis, 1980;
Richmond, 1985; Hines, 1996) previously developed a number of standard pieces of
structure (called molecules) to address frequently encountered modeling problems. The
fi rst formal compilation of system dynamics molecules (Hines, 1996) was based on

a Ventana Systems, Providence, RI, U.S.A.
b Sloan School of Management and Center for Collective Intelligence, MIT, Cambridge, MA, U.S.A.
c Faculty of Economics, University of Lugano, Switzerland.
d Center for Coordination Science, MIT, Cambridge, MA, U.S.A.
e Research Department, Intel Corporation, Chandler, AZ, U.S.A.
f Center for Transportation and Logistics, MIT, Cambridge, MA, U.S.A.
g Media Laboratory, MIT, Cambridge, MA, U.S.A.
* Correspondence to: Paulo Gonçalves. E-mail: paulo.goncalves@usi.ch
Received February 2006; Accepted September 2009

System Dynamics Review
System Dynamics Review (2010)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sdr.437

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

specialization inheritance, borrowing directly from object-oriented programming (e.g.,
Goldberg and Robson, 1989). Teachers who used these molecules in their intermediate
system dynamics classes at MIT saw students’ knowledge of standard system dynamics
structures improve. However, the derived models often lacked feedback loops and gen-
erated few, if any, insights.

This paper describes a new approach to using molecules in system dynamics model-
ing. The heart of the approach is a systematically organized library (or taxonomy) of
predefi ned model components (or molecules) and a set of software tools for progressively
replacing one molecule with another. The framework allows users to rapidly build
system dynamics models by replacing parts of models with more specialized versions
of the same parts. For instance, the framework lets users successively develop models
from causal loop diagrams, a process that has been traditionally diffi cult to teach effec-
tively to students. We demonstrate the framework’s capability by building one useful
system dynamics model, and we describe a general approach to applying the framework
in other situations.

While related ideas have been used in previous simulation systems for years (e.g.,
Goldberg and Robson, 1989; Meyer, 1992; Fleishman and Hemple, 1994), this approach
takes the basic ideas further than any previous efforts. For instance, our approach has
“designed-in” the composability of molecules and, by extension, models. This designed-
in composability helps assure that assembled and recombined components satisfy user
requirements meaningfully (Davis and Anderson, 2004).

In addition, the molecule hierarchy proposed here allows users to see the structural
connections among molecules when they are deciding which replacements to make.
This ability to see structural connections makes it easier for users not only to create
new molecules but also to see where one molecule can be replaced with another one.
Moreover, the molecule hierarchy has been designed to allow molecules to fi t together
in a seamless way after such replacements have been made.

Finally, the hierarchy makes it especially easy to rapidly construct simulation models
using either a conventional graphical user interface (i.e., a mouse and screen) or a novel
“tangible user interface” (Ishi and Ullmer, 1999), where users manipulate actual physi-
cal objects on a special table.

While this approach is not a “magic bullet” that makes the creation of simulation
models instantaneous and effortless, it has the potential to signifi cantly increase (a)
the speed with which new simulation models can be created, (b) the “correctness”
of those models, (c) the number of people who can create simulation models for them-
selves without requiring the assistance of professional programmers and modeling
experts, and (d) the use of simulation mode ling for facilitating conversations and
collaboration.

To develop our approach, we conducted a substantial multi-year investigation to
construct system dynamics simulation models (e.g., Forrester, 1961; Sterman, 2000) of
corporate supply chains. This paper summarizes the results of that investigation. It
describes (1) the comprehensive library of system dynamics molecules we developed,
and (2) the software tools we used to combine and refi ne these molecules. Of particular
interest is the fact that our library of system dynamics molecules constitutes a “periodic
table” of the elements used in constructing any system dynamics model. In addition,
since the library is open-ended, new combinations of these elements can always be
added as they are identifi ed. In fact, our process for constructing models actually aids

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

in placing new molecules in their proper places in the “periodic table”. We illustrate
the use of this approach with a hypothetical usage scenario based upon our extensive
analysis of the supply chain of a large manufacturing company (further described in
Gonçalves, 2003; Gonçalves et al., 2005). The paper concludes with lessons about how
this approach can be applied with other kinds of simulation and in other situations.

Background

Before describing our approach in more detail, it is useful to review the fundamental
idea of reusable components in computer science as well as the diffi culties in the
current practice of simulation modeling.

Reusable software components

Computer scientists have noted for decades that different computer programs in the
same general domain often have many commonalities. In fact, much of the progress in
computer science can be seen as successive ways of cap turing these commonalities in
reusable tools like compilers, operating systems, subroutine libraries, and graphics
packages. In this way, different programmers can reuse the standard features these tools
provide, rather than having to reinvent them each time the features are needed. In
computer science, such general reusable solutions are often called design patterns, after
the architectural concept coined by Christopher Alexander (1977, 1979). Design patterns
gained currency in computer science after the book Design Patterns: Elements of Reus-
able Object-Oriented Software (Gamma et al., 1995) was published.

While most of these reusable components have been organized in “fl at” collections,
one particularly important approach, object-oriented programming, employs a “deep”
approach. In an object-oriented environment such as Smalltalk, C++, or Java, the reus-
able components are classifi ed in an inheritance hierarchy where “child” components
automatically “inherit” properties of their “parents”. The specialization relationship is
called an is–a relationship. “A is-a B” means that A is a specialization of B, and B is a
generalization of A. For instance, a “car” is-a “vehicle,” and “vehicle” is a generalization
of “truck”, “car”, and “bus.” In an is-a relationship, the “child” class inherits all the
properties of its parent. For instance, cars inherit properties from vehicles, such as
moving in a certain way.

Even though the goal of creating simulation models was historically important in the
development of some of the fi rst object-oriented programming languages (e.g., Simula
and Smalltalk), most modern simulation languages still use collections of “fl at” com-
ponents from which programmers can choose using icon-based mouse-enabled graphi-
cal user interfaces.

Diffi culties in the current practice of simulation modeling

Even though simulation models have the potential to be extremely useful, they are often
diffi cult to create. For example, most people can create for themselves only the simplest
and least fl exible form of simulations: spreadsheets models. Professional modelers or
programmers are almost always needed to create other common kinds of simulations
(e.g., discrete event, system dynamics, and agent-based simulations).

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

The diffi culty of creating simulation models is also refl ected in high costs and error
rates. A small professional system dynamics effort, for instance, will typically cost from
U.S. $25,000 to $100,000; large efforts can range into the millions (Dalton, pers. comm.
2003; Eberlein, pers. comm. 2003). As for error rates, Panko and Haverson conclude in
their survey of studies of spreadsheet models that “every study that has looked for errors
has found them in signifi cant numbers” (Panko and Halverson, 1996, p. 4).

Exacerbating the problem of the high cost of model creation is the low opportunity
to amortize the investment over multiple problems or questions. In fact, surprisingly
few models, including very costly ones, are ever employed again after the original
problem has been solved. This means that the entire fi nancial burden of building a new
model must be borne by the potential benefi t of solving only the current problem.

The effort to compile a hierarchy of “molecules” capturing standard structures in
system dynamics had its motivation in object-oriented programming (Hines, 1996). The
goal was to allow users to create simulation models faster, more accurately, and with
more reusability. However, even before the explicit effort to create a hierarchy of mol-
ecules, standard structures were developed in seminal papers and tended to get
repeated in models without attribution. Many of the fi rst standard structures (or “mol-
ecules”) appeared in Jay Forrester’s writings in system dynamics (Forrester, 1958, 1961).
Industrial dynamics (Forrester, 1961) had molecules built into its DYNAMO software
(e.g., level equations, fi rst- and third-order smoothes, and material delays). Also impor-
tant was the market growth model created by Dave Packer working with Jay Forrester
(Forrester, 1968). In addition, the project model, originally developed by Henry Weil,
Ken Cooper, and David Peterson around 1972, contributed a number of important mol-
ecules. Jim Lyneis’ book (Lyneis, 1980) contained important structures for corporate
models. Equally important was the treasure trove of good structures in the MIT National
Model, to which many people contributed, including Alan Graham, Peter Senge, John
Sterman, Nat Mass, Nathan Forrester, Bob Eberlein, and of course Jay Forrester. George
Richardson and Jack Pugh described a number of commonly occurring rate and stock
equations in their excellent book (Richardson and Pugh, 1981). Adopting the term
“atoms of structure”, Barry Richmond (1985) described a number of common rate struc-
tures in his paper describing STELLA, the fi rst graphical system dynamics modeling
environment. Barry Richmond and Steve Peterson continued to present useful small
structures in the documentation for STELLA and its sister product iThink. And, mis-
remembering the term “atoms of structure”, one of the authors of this paper used the
term “molecules” in his initial attempts to extend and categorize these structures
(Hines, 1996).

As the description above suggests, the idea of molecules per se is not new in system
dynamics. However, the effort to compile them in a hierarchy is. The original molecule
hierarchy (Hines, 1996) allowed more people to have access to standard structures dis-
seminated in the system dynamics literature. Because the original molecule hierarchy
emphasized a specialization inheritance and in particular is-a relationships, it was very
effective for teaching purposes. For instance, if students understood the concept of a
parent (e.g., a vehicle), it was much simpler to grasp new concepts for its children (e.g.,
cars or trucks). However, while the original molecule hierarchy helped improve stu-
dents’ knowledge of standard system dynamics structures and accelerate their ability
to build system dynamics models, the resulting models often lacked feedback and gen-
erated few, if any, insights.

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

While it was possible to explore the replacement aspects of inheritance in the original
molecule hierarchy, this traditionally was not done. Also, a replacement hierarchy
requires the ability to “plug-and play” molecules (where a child that replaces its parent
still allows the model to run). The original molecule hierarchy was not designed for
this purpose, and attempts to use it in this way would have required major redesign.

The current version of the molecule hierarchy has undertaken such redesign. It
expands the original set of molecules and facilitates replacement though a new tax-
onomy showing the connections between molecules. This new taxonomy also purpose-
fully helps users see the structural con nections between molecules. Our experience
with this new taxonomy is limited (as described below, we built only one major model).
But based on this experience, we believe that this taxonomy has the potential to sub-
stantially reduce the time, cost, and effort in creating system dynamics simulation
models.

Our approach

The key to our approach is making it especially easy for people to refi ne and combine
predefi ned components (or “molecules”) into new models. The three prerequisites nec-
essary for our approach are (1) a systematically organized catalog of predefi ned mole-
cules, (2) automatic tools to help users replace parts of an existing molecule with more
specialized versions of the same parts, and (3) automatic tools for storing and catalogu-
ing new molecules.

A systematically organized catalog of predefi ned molecules

In chemistry, a molecule consists of a certain number of more elementary parts, either
atoms or other molecules, and a set of linkages between these parts (i.e., chemical
bonds). Similarly, in our approach to simulation modeling, a “molecule” consists of a
number of more elementary parts, which are themselves (simpler) molecules, and a set
of linkages between these parts. For example, a simple supply chain model might
include molecules for production planning, manufacturing, assembly, and shipping
fi nished goods. The molecule for production planning might, in turn, include molecules
for storing materials in a warehouse and placing orders when the warehouse inventory
levels reach a certain point. We require that all individual molecules be “run-able” so
technically a molecule is a simulation model that can be a component in a larger simu-
lation model. Because any model can be a component in a larger model, it is also true
that a model is a molecule. We will use the term “molecule” when we wish to emphasize
the building block nature of things, and we will use the term “model” when we wish
to emphasize a usefulness beyond “just” being a component of something larger.

Before describing how we systematically organize catalogs of molecules, it is useful
to see some detailed examples of molecules. Since we have applied our approach using
system dynamics models, we will use system dynamics molecules for this purpose.
System dynamics models are basically systems of nonlinear differential equations.
In the system dynamics graphical notation, a stock (mathematically, an integral) is
represented as a rectangle, a stylized bathtub. A fl ow (i.e., a partial derivative with
respect to time) is represented as a double arrow, a stylized pipe. A policy (decision

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

rule) controlling a fl ow is represented as a stylized “valve” (often depicted as a simple
hourglass shape) on a pipe, and sub-policies are represented as labels connected by
information links depicted as skinny, curved arrows (“telephone wires”). All fl ows are
conserved; that is, every fl ow comes from one stock and goes into another. When the
stock in question is beyond the scope of a model, a cloud, instead of a rectangle, is used.
Figure 1 illustrates the symbols.

As an example, Figure 2 shows the system dynamics material delay molecule. A
material delay is a relatively low-level component that is available as a function in most
system dynamics simulation environments. Very simply, a material delay allows a
modeler to create a fl ow (outfl ow) that is a delayed version of another fl ow (infl ow).

Mathematically, a material delay is a fi rst-order linear, non-homogeneous, fi xed-
coeffi cient differential equation. It is defi ned by the following equations:

d
dt

Stock low outflowt t t= −inf

outflow
Stock

imeConstant
t

t=
t

Dynamically, the outfl ow is an exponentially smoothed and exponentially delayed
version of the infl ow, which comes from elsewhere in the model. A stock accumulates
the difference between the infl ow and the outfl ow, ensuring that everything that goes
in eventually comes out and nothing more. As an example, a modeler might use a mate-
rial delay to represent the lag in realizing cash from accounts receivable. Dollar sales
would be the infl ow into the stock of accounts receivable. Flowing out of accounts
receivable (and into the stock of cash) would be “cash fl ow”, a delayed version of dollar
sales equal to accounts receivable divided by the average delay (the timeConstant).

Stock
policy

sub-
policy 1

sub-
policy 2

information
Input 1

information
Input 2

Fig. 1. Symbols used in system dynamics stock-and-fl ow diagrams

Fig. 2. System dynamics material delay molecule

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Arranging molecules in a specialization hierarchy
Having predefi ned, reusable components can be useful in almost any software deve-
lopment endeavor and in particular in the creation of computer simulation models.
The power of our approach, however, depends on converting these fl at components
into deep components that are related to one another in a very specifi c, systematic
way.

In our case all the predefi ned molecules are arranged in a specialization hierarchy
where each item is classifi ed as a subtype (a kind of specialization) of one or more other
items. Each item can also, in turn, have its own subtypes. In fact, it is possible to clas-
sify any simulation model, regardless of its complexity, somewhere within this special-
ization hierarchy, and all of its component parts can also be classifi ed somewhere
within the hierarchy too. (See Malone et al., 1999, for an extensive description of the
type of specialization hierarchy we use.)

For example, Figure 3 shows a unifi ed modeling language (UML) class diagram of a
small subset of the specialization hierarchy around the material delay molecule
described above. Readers can fi nd a full description of the replacement hierarchy at
web.mit.edu/~paulopg/www/.

The basic element is the system dynamics (SD) molecule. The basic SD molecule has
three important subtypes: stocks (i.e., accumulations), fl ows (which fi ll or deplete
stocks), and policies, which control fl ows (cf. Forrester, 1961, pp. 93 ff.). To understand
the hierarchy in more detail, it is useful to focus on a single chain (see, for example,
Figure 4).

A stock can have any number of infl ows and outfl ows. Figure 5 shows that a bathtub
is a specialization of a stock. In fact, a bathtub is a stock that has a single infl ow and a
single outfl ow.

The material delay (as shown in Figure 2) is a specialization of a bathtub. The mate-
rial delay uses a specifi c outfl ow, namely a decay outfl ow. The decay outfl ow is itself a
molecule, with its own place in the hierarchy (see Figure 3).

An aging chain is a disaggregation of a (fi rst-order) material delay into an nth-order
one, where each outfl ow from a sub-material delay fl ows into the next sub-material
delay. For example, a third-order material delay appears in Figure 6. Each of the dis-
aggregated time constants would normally be set to one-third the original
timeConstant.

Finally, a modeler might specialize the aging chain by changing the names and units
and by giving different values to each of the disaggregated time constants. In so doing,
the modeler might create a crude representation of a sequential supply chain
(Figure 7).

This specialization, created by a modeler, is a running model and has its own place
in the specialization hierarchy (see Figures 3 and 4).

One advantage of arranging components in hierarchies like this is the resulting ease
with which users can fi nd the components they need, even in very large collections of
components. A user who understands the specialization hierarchy will know,
for example, that an aging chain must be near the material delay and the material
delay must be near the bathtub. Another important advantage of a hierarchy is
that it simplifi es the creation of new models by allowing one to build up a more
specialized (often larger) model by replacing elements in a less specialized (often
smaller) one.

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

F
ig

.
3.

 S
p

ec
ia

li
za

ti
on

 h
ie

ra
rc

h
y

su
rr

ou
n

d
in

g
th

e
m

at
er

ia
l

d
el

ay
.

N
ot

e:
 I

n
 a

 U
M

L
 c

la
ss

 d
ia

gr
am

,
cl

as
se

s
ar

e
re

p
re

se
n

te
d

 a
s

re
ct

an
gl

es
 w

h
os

e
fi

rs
t

li
n

e
gi

ve
s

th
e

n
am

e
of

 t
h

e
cl

as
s.

 A
 c

la
ss

 i
s

co
n

n
ec

te
d

 t
o

it
s

su
p

er
cl

as
s

by
 a

 l
in

e
te

rm
in

at
in

g
in

 a
 t

ri
an

gl
e

(i
.e

.,
th

e
tr

ia
n

gl
e

m
ar

k
s

th
e

su
p

er
cl

as
s)

.
A

 c
la

ss
 t

h
at

 i
s

u
se

d
 i

n
 t

h
e

co
m

p
os

it
io

n
 o

f
an

ot
h

er
 c

la
ss

 i
s

co
n

n
ec

te
d

 t
o

th
at

 c
la

ss
 b

y
a

li
n

e
te

rm
in

at
in

g
in

 a
 d

ia
m

on
d

 (
i.

e.
,

th
e

d
ia

m
on

d
 m

ar
k

s
th

e
co

n
ta

in
in

g
cl

as
s)

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Modeling by replacement

Readers familiar with the notions of inheritance in object-oriented programming will
immediately see the similarities between these concepts and the concept of specializa-
tion as we are using it here. Our use of specialization, however, differs in two important
ways from the way that inheritance is typically used in most object-oriented program-
ming languages. First, the items that are specialized in typical object-oriented program-
ming are often “objects”, not “actions”. In many simulation models, however, the items
of primary interest are the actions (“verbs”) whose effects are being simulated, not the
objects (“nouns”) upon which those actions operate. Our specialization hierarchies
inherit down a hierarchy of “verbs” as well as “nouns”, and this provides substantial
power and fl exibility for creating simulation models. (See Malone et al. (1999) and Lee
and Wyner (2003) for extensive discussions of this issue.)

In addition, our approach requires that the specialization hierarchy of molecules be
arranged in such a way that replacing a molecule with any of its specializations still
results in a mathematically and conceptually valid simulation model.1 For example, in
a system dynamics model, you can always replace a bathtub with an aging chain and

Fig. 4. A small “chain” of the specialization hierarchy

Stock
inflow outflow

Fig. 5. The bathtub molecule

Sub-
Stock1

Sub-
Stock2

Sub-
Stock3

inflow sub
Flow1

sub
Flow2

outflow

time
Constant1

time
Constant2

time
Constant3

Fig. 6. The aging chain molecule

Factory Warehouse
manufacturing

manufacturing
CycleTime

starts selling

selling
Time

Assembly
assembling

assembly
Time

Fig. 7. A simple sequential supply chain

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

still have a valid model. In other words, the specialization hierarchy must have the
following formal property (see, for example, Liskov and Wing, 1994; Lalond and Pugh,
1991):

Substitution property: If S is a mathematically valid molecule whose parts are the
molecules Mi (for i = 1, . . . , n), and Mi′ is a specialization of Mi, then replacing Mi
with Mi′ in S results in a molecule S′ which is also a mathematically valid
molecule.

When this property holds, users can refi ne subparts of a model and have the new sub-
parts automatically substituted into the overall model. Naturally, the user must still
choose a specialization that is an appropriate representation of the environment being
modeled. While our approach cannot guarantee that users will choose appropriately,
the list of specializations provides a framework which allows users to compare the
resulting models with the environment. The challenge for inexperienced modelers
shifts from “How do I model this decision?” to “Which specialization is closest to this
decision?”

The specialization hierarchy makes molecule refi nement straightforward. Users can
select any element of a model (e.g., by clicking on it), and immediately see all the pos-
sible specializations of this element. Then, if the user selects one of these specializations
and invokes the “replace with specialization” action, the system automatically substi-
tutes the specialized version of the element in place of the original version. For example,
a fi nancial model might represent accounts payable as a material delay. A click would
replace the material delay with an aging chain, in order to separate payable accounts
into “buckets” of different ages.

In many cases, the system can automatically make all the necessary connections so
that the new model is a completely valid simulation model. In the example immediately
above, the infl ow to the old material delay would be the infl ow to the new aging chain.
Any component that used the outfl ow from the original material delay would receive
instead the outfl ow from the new aging chain. Components that depended on informa-
tion about the single stock of receivables in the old formulation would automatically
get information on the sum of the buckets in the aging chain. When the system cannot
itself make the necessary connections, however, it can at least automatically call the
user’s attention to the places where further actions are needed to make the model a
mathematically valid one. For example, when replacing a policy with a goal-gap, there
may be more than one candidate for the goal. In this case, as discussed below, the system
will create a “reaction object” (a sort of place-holder), which the user can easily connect
to one of the valid alternatives in the model. Once again, the user must choose the
appropriate goal from the set of valid alternatives. While there is little doubt that mod-
eling experience will help in the choice, the list of alternatives allows users to easily
compare the choices.

This process of replacing parts of a model with more specialized versions of the same
parts can, of course, be repeated many times in different parts of the same model. It is
often desirable, for instance, to make a substitution in one part of an overall model and
then make further substitutions inside the subparts (i.e., “sub-molecules”) of the mol-
ecule that has just been added. In this way, users can create arbitrarily complex models
simply by making repeated substitutions in a single starting model. At each step along
the way, they have a valid model, and all they ever have to do is select from the

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

alternatives that are automatically presented to them by the system. They never have
to write a single line of textual specifi cation (“programming”) as they would in almost
all other simulation environments today.

Library expansion as a byproduct of modeling

Replacement hierarchies can be formed so that modeling by replacement creates an
expanding library of molecules available for future modeling efforts. All that is required
is a natural extension of the substitution property. If we view the tree of all specializa-
tions of a molecule as a set, then the extension is simply to ensure that the set of spe-
cializations is closed under the operation of replacement:

Substitution property with closure: If S is a mathematically valid molecule whose
parts are the molecules Mi (for i = 1, . . . , n), and Mi′ is a specialization of Mi, then
replacing Mi with Mi′ in S results in a molecule S′ which is also a mathematically
valid molecule and which is a specialization of S.

In other words, the new molecule S′ can be immediately “shelved” under its generaliza-
tion, the old molecule S. This cataloguing and storage function is easily automated. For
example, say we change the sequential supply chain model of Figure 7 by substituting
a specialization of the outfl ow. We immediately create a specialization of the original
supply chain model. The specialization is located right “beneath” the original supply
chain model. If we have a larger industry model of which the original supply chain
model was a component, we can now replace the original supply chain model with its
new specialization. This will create a new specialization of our industry model, which,
in turn, could replace the old industry model in a yet larger model of an economy.

The use of deep components with the closed substitution property creates a rapid and
less error-prone process of model creation that continually produces new, properly cata-
logued specializations of prior molecules, and which ultimately results in the model
itself also becoming part of the specialization hierarchy, properly catalogued and avail-
able for future use. For many common simulation approaches (including system dynam-
ics), we believe it is possible to construct “complete” taxonomies from which any
possible mathematically valid model can be constructed by making successive replace-
ments in the way just described. The approach we have described can still speed and
simplify some (often, most) of the model creation task, even when such a complete
taxonomy cannot be constructed.

Implementing the approach

To develop and test this approach, we applied it to system dynamics simulation models
of supply chains. We also used a new generation of tangible user interfaces (Patten
et al., 2001), which we describe briefl y below. The supply chain domain was an obvious
choice. First, the manufacturing company with which we worked closely in this project
is known for its supply chain expertise, and our closest associates at this company
included people with signifi cant knowledge of the supply chain. Second, the focus on
supply chains permitted us to apply our ideas in an area where the need for better
alignment and integration is widely recognized by both managers and academics.

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

An important goal of our project was to develop simulation environments that could
be easily used, not just with traditional graphical user interfaces but also with a new
generation of “tangible user interfaces” (Ishii and Ullmer, 1999). In general, tangible user
interfaces move beyond pointing to words and pictures on computer screens and,
instead, let users see and manipulate three-dimensional physical objects in the real
world. Such interfaces can have several of these three-dimensional physical objects.
Consequently, tangible user interfaces seem particularly attractive for the kind of col-
laborative model building that may prove useful in domains such as supply chains.

We chose to use system dynamics models in this project for four reasons. First, system
dynamics possesses few primitive components (e.g., stocks, fl ows, and policies) so it
seemed likely that the process of replacement would usually work in a system dynamics
model. Second, a number of common modeling structures in system dynamics are
already recognized within the fi eld. These common formulations make a good start on
a comprehensive set of molecules. Further, system dynamics is particularly well suited
to the central challenge facing people who manage and study supply chains: under-
standing and improving the performance of a system considered as a whole. Finally,
the notion of collaborative model building is already well established within the system
dynamics fi eld (e.g., Vennix et al., 1997).

The particular tangible user interface developed in this project, known as the Sense-
table, allows users to move special physical objects (called “pucks”) around on a special
table that senses the location of the pucks, while computer-generated colors, words, and
pictures are projected from above onto the pucks and table (Figure 8). While our
approach to developing simulation models does not depend on using such a tangible
user interface, we believe our approach is especially well suited to taking advantage of
this new generation of computer user interface.

In order to apply our approach here, we needed to develop the three key elements of
our approach described in the previous section: a systematically organized library of
molecules, a way of replacing parts of molecules, and a way of automatically cataloguing
new molecules into the library.

A systematically organized library of predefi ned molecules

To develop the library of molecules for system dynamics models, we started with an
earlier hierarchy of 50 common components of system dynamics models (Eberlein and
Hines, 1996; Hines, 1996).

Because this earlier hierarchy did not strictly enforce the substitution properties
described above, our fi rst step was to reorganize the molecules into a specialization
hierarchy with the property of substitution with closure. At the “top” of our new
replacement hierarchy we put three basic types of molecules: Stocks, Flows, and Policies
(see Figure 3). Stocks are accumulations of physical things or information; Flows carry
physical things or information into and out of stocks; and Policies are the decision rules
which control the fl ows.

A new hierarchy reveals new molecules
With these three fundamental categories, we turned to categorizing the 50 original
molecules and discovered that the pre-existing structure had some signifi cant leaps in
degree of abstraction. For instance, the Stock Protected By Stock molecule differed from

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

F
ig

.
8.

 T
h

e
ta

n
gi

bl
e

u
se

r
in

te
rf

ac
e

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

a stock molecule by defi ning an outfl ow that was kept below a maximum value in order
to ensure that the fl ow would not take the stock below zero. The maximum value for
the fl ow was calculated as a user-defi ned function of the stock: Outfl owt = f(Stockt) ×
IndicatedOutfl owt. The function f(·) equals 1 as long as the stock is above a critical value
(the “desired stock”) so that, when unconstrained, the outfl ow is equal to the indicated
outfl ow. Below the critical value, the function goes to zero as the stock goes to zero. In
the new hierarchy, the direct connection between stock and its child would have meant
that this particular outfl ow type would descend directly from an undifferentiated fl ow.
But a number of other kinds of fl ows—less general than an undifferentiated fl ow, but
more general than this particular fl ow—could be conceptualized as intervening: Flow
outfl ow → Outfl ow Below Maximum → Outfl ow Protected By Stock.

As illustrated in Figure 9, the new structure “opens up” the hierarchy so that other
molecules can be inserted in their rightful place by asking the question: How else do
system dynamics modelers represent outfl ows that are below a maximum? A pre-
existing molecule, Outfl ow Protected By Flow easily fi ts, and it was moved from its prior
parent, Decay. We realized another formulation—DrainToZero,2 which drains a stock
until it is zero and then stops draining—was also widely used, even though it had
escaped notice during the earlier attempt at hierarchy building. This was one way in
which the new hierarchy fostered the identifi cation of new molecules.

Another way our replacement hierarchy helped us discover missing molecules
involved the idea of collectively exhaustive specialization (CES). Because replacement
(or subtype) hierarchies are based on meaning or concept, one can ask the question
whether a set of specializations covers the entire concept represented by their common
parent. For example, having the molecule Outfl ow Below Maximum raises the question
whether there should be a molecule for Outfl ow Above Minimum. We believe such a
molecule would not be found in most practitioners’ mental warehouses of tried-and-true
structures. Nonetheless, a formulation can be easily created and is actually useful in
representing, say, a container (e.g., a warehouse) of fi xed volume. When the container
is full, the outfl ow has to be at least equal to the infl ow. CES, in this case, led to the
creation of a “new” molecule—one that was not widely recognized before this work.

As we applied these processes of fi lling in the chain and looking for collectively
exhaustive specializations, the original set of 50 molecules grew to over 200. By

Fig. 9. Outfl ow Protected By Stock and a portion of the new taxonomy

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

systematically organizing molecule types into a replacement hierarchy, we created
knowledge about the range of possible elements in a simulation model. In this sense,
our approach is similar to the periodic table of the elements in chemistry, which high-
lighted the potential existence of new elements even before they were discovered.

Obviously, 200 molecules would overwhelm a fl at-component, icon-based architec-
ture. Interestingly, the same taxonomic system that allowed us to expand the number
of molecules also keeps them ordered and available to anyone familiar with the tax-
onomy. In this use, the taxonomy is something like the Dewey decimal system. If
you know the kind of molecule you need, you can go to the proper shelf to fi nd it; and,
if the molecule is missing, you know that specifying it will be a contribution to the
fi eld.

Modeling by replacement

The hierarchy of system dynamics molecules was stored in a systematically organized
online knowledge base called the Process Handbook (see Malone et al., 1999, 2003),
which already included extensive facilities for manipulating and viewing textual and
graphical descriptions of processes arranged in specialization hierarchies and a pre-
existing library of over 5000 business activities and processes. The Process Handbook
also already included capabilities for replacing an element in a business process with
one of its specializations by simply selecting from a menu of the possible alternatives.
As part of this project, we augmented these existing capabilities of the Process Hand-
book with additional capabilities to store and manipulate mathematical equations and
to display system dynamics models using stock-and-fl ow symbols.

In addition, the Process Handbook can store substantial information about each of
the alternative specializations of an item. Thus the handbook can prompt users who do
not immediately know which choice they want to make for a given replacement. We
extended this capability to store molecule-relevant information, such as units as well
as information about how a molecule can replace a parent. For example, when replacing
an original bathtub (Figure 5) with an aging chain (Figure 6), the handbook “knows”
that the infl ow to the original bathtub should become the infl ow to the aging chain and
that the aging chain’s outfl ow should replace the outfl ow of the original bathtub.
The handbook also knows to propagate the physical units (e.g., ‘barrels of wine’) as well
as the time unit (e.g., ‘months’) from the original bathtub to the new aging chain.

In many cases, as soon as a user selects a replacement, the system automatically makes
all the necessary connections so that the resulting model is conceptually valid and
completely functional. In other cases, the system makes most of the necessary connec-
tions and substitutions, but additional user action is required to make a completely
functional model. In these cases, the system creates and displays one or more of what
we call “REAction objects” (short for “Required Editorial Action objects”). For example,
when a modeler replaces a Stock, representing an inventory, with a Monitored Stock
(i.e., one with a goal attached), information concerning the gap between the stock and
its goal could go to the downstream supplier, the upstream pricer, or both. The REAc-
tion object focuses the modeler’s attention on that choice.

As part of this project, we implemented all the capabilities we have just described
for tangible user interfaces (TUIs) (Patten et al., 2001) as well as graphical user interfaces
(GUIs). In TUIs, for instance, instead of showing menus of alternative replacements on

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

a screen and letting users make selections with a mouse, the menus are projected onto
the special table, and users make selections by moving a special “puck” on the table.

Library expansion as a byproduct of modeling

As one molecule is replaced by another, a series of specializations are made. Each new
specialization is itself a molecule. Because the molecule resulted from a specialization,
the system has the information of where to place the molecule in the hierarchy at the
time the molecule is created. Our system automatically places every new molecule into
its proper place in the hierarchy.

Scenario of use

To help visualize the usefulness of this approach, imagine the following scenario, based
upon our analyses of actual supply chain issues in the large manufacturing company
we studied. Since our system is not yet robust enough for daily use in remote sites, the
scenario described here is a hypothetical description of how a system like ours could,
in the future, be used in practice. The specifi c characters and events are fi ctional.

The scenario involves three people from a semiconductor manufacturing company:
Manny, the manufacturing manager; Polly, the planner; and Warren, the warehouse
manager. Their collaboration is central to performance, but they seldom fi nd a time or
a setting conducive to that collaboration. Earlier Manny had confronted Polly with a
disturbing pattern of dramatic oscillations in plant utilization: back and forth from very
heavy to very light. Polly responded by saying she was reacting to erratic requests from
Warren in the warehouse. Warren, reached by telephone, reported that he frequently
had to scramble because of the unpredictable, stop-and-go nature of deliveries from
Assembly.

The three managers decide to meet in the “war room”, a converted conference room
that is the home of a system similar to the one we have developed. The most visible
part of the system is the equipment for the TUI: a medium-sized table with built-in
sensor technology, an LCD projector mounted from the ceiling projecting onto the table,
and a box of small disks (about 1.5 inches in diameter), called “pucks”.

Polly begins by putting a puck down on the table to represent the beginning of a
model of the company’s supply chain. The system projects onto the table several pos-
sible specializations of this generic element, and Polly picks a bathtub (see Figure 5,
above). The symbol for a bathtub is then projected on the puck. Next Polly says that the
stock represents all of the stock in the company from manufacturing through assembly
and including the warehouse. She specifi es the units by typing “chips” on a keyboard.
The system then asks her what units she wants to use to measure time. She chooses
“weeks”, and the system automatically sets the units on the infl ow and outfl ow to be
“chips per week”. Polly then turns the knob on top of the puck to set the initial value
of the chips in the system. She guesses that there are 20 million chips in the system.
Then she takes a new puck from the box, puts it on the infl ow valve, and turns the knob
to represent an infl ow of 900,000 units per week, saying “That’s about what I’m starting
right now.” Next Warren takes another puck from the box, sets it on the outfl ow, and
dials in 1 million chips per week, explaining that that was about the current rate of
shipments.

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Now, Manny says he would prefer to see his own manufacturing plant separated from
the assembly plant and from the warehouse, so he replaces the bathtub with an aging
chain, one of the specializations of bathtub, though not a direct one (see Figure 6). To
do this, he takes a special puck— used for doing replacements—and puts it on the
bathtub. In response, the system projects on to the table a list of potential specializa-
tions of bathtub and Manny moves the special puck to the one called Aging Chain and
types in new labels: Factory, Assembly and Warehouse (see Figure 7). Manny also speci-
fi es that factory currently has around 10 million chips, whereas Assembly and Ware-
house have 5 million each. He also sets manufacturing Cycle Time to 10 weeks, and
Assembly Time and Selling Time to 5 weeks each.

Behind the scenes, the system automatically generates a new model at each step,
simulates it, and projects the results on to the table. After the last step above, the Sense-
table shows a diagram like the one in Figure 10 and the simulation engine has the
following model:

d
d

Factory
T

starts manufacturing= −

starts = 900 000,

manufacturing
Factory

manufacturingCycleTime
Factory

t
t t= =

10

d
d

Assembly
T

manufacturing assemblingt t= −

assembling
Assembly

assemblyTime
Assembly

t
t t= =

5

d
d

Warehouse
T

assembling sellingt t= −

selling
Warehouse
sellingTime

Warehouse
t

t t= =
5

Factoryo = 10,000,000; Assemblyo = 5,000,000; Warehouseo = 5,000,000

Note that the system automatically sets the value of the infl ow to be the same as the
infl ow to the original bathtub. In addition, the system automatically propagates the units
through the more complicated structure. With the model equations, infl ow, and initial
conditions specifi ed, the system generates the dynamic behavior shown in Figure 11.

Polly says that she does not actually keep starts constant at 900,000, but instead is
continually smoothing production requests coming from upstream. Using the pucks,
the smooth molecule and a few quick gestures, she alters the diagram accordingly
(Figure 12).

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Fig. 10. First three actions in scenario

Fig. 11. Simulating model after fi rst three replacements

Fig. 12. The production manager smoothes production requests

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

The warehouse manager says that he would not allow the warehouse inventory to fall
as it does in Figure 11. Instead, he would request that production be increased to elimi-
nate the shortfall between the desired and the actual position of the warehouse. While
the warehouse manager, using a goal-gap molecule (see Figure 3), makes the required
substitutions, Polly observes that the warehouse request is one component of total
requested production, explaining that the other component, information on shipments,
represents production required to replace what is being sold. As the warehouse manager
fi nishes his modifi cation, Polly put in hers, leading to the model diagram in Figure 13.

Eventually the three managers arrive at a model that oscillates (Figure 13) and, in so
doing, realize that their well-meaning policies for factory starts and warehouse control,
although quite reasonable in themselves, combine with the factory cycle time to produce
cyclical ups and downs in all inventories as well as in all fl ows (e.g., starts, manufac-
turing, assembling, and selling). Interestingly, Polly’s well-meaning attempt to smooth
production actually increases system-wide instability.

Based on this new shared understanding, the three managers continue using the
technology to design policies that not only work well in isolation but also work well
together. When the new policies are implemented, the supply chain operates more
smoothly with less waste, less disruption and, not incidentally, less wear and tear on
the managers involved. The managers know that the future will bring changes and,
eventually, the need for further redesign. But, because their model was automatically
stored as a molecule in its proper place within the hierarchy, any subsequent redesign
will pick up where the three managers previously left off.

Discussion

Firm conclusions concerning the benefi ts and drawbacks of this approach must wait
more extensive testing. Nonetheless, our anecdotal experience of using this approach

Fig. 13. Additional production is requested to correct a warehouse shortfall

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

with the company we studied is highly suggestive of the benefi ts, limitations and open
issues of this approach.

Benefi ts

Speed of model construction
The most obvious benefi t of this approach is that models can be created more rapidly
even for a professional modeler. With predefi ned components available (and locatable),
modelers do not need to create from scratch the standard formulations they want to
use. Our rough estimates are that 80–90 percent of most professionally built system
dynamics models are composed of standard formulations. Currently, modelers have to
create each formulation anew every time they use it.

Being relieved of this mindless repetition can itself be a time saver. In addition, typo-
graphical errors often complicate the process of recreating a standard formulation from
scratch. Using guaranteed typo-free pre-built molecules eliminates the considerable
time even very good modelers spend tracking down the sources of odd behavior gener-
ated by such errors. Further, because the system suggests replacements, a modeler who
previously was unaware of the existence of a useful molecule will have it automatically
suggested to him—saving the time that would otherwise be spent needlessly “reinvent-
ing the wheel”.

Conversation-oriented modeling
Conversation normally proceeds much faster than traditional modeling. The increase
in modeling speed from using our system appears to be about the same order of mag-
nitude as that by which conversation normally outpaces modeling; and, in fact, in
demonstrations with our research sponsors, the modeling seemed to easily keep pace
with the conversation around the system. The approach described here promises to
allow modeling to be used within a group conversation. We suspect that this combina-
tion may alter the nature of managerial conversations, by adding the equivalent of a
fl ipchart that can “talk back” via the magic of simulation.

Engaging people
We have found that the TUI seems to have a remarkable effect on many people to whom
we show the system. They are engaged—drawn into it. This engagement effect enhances
the probability that this system can change the nature of conversations and collabora-
tion in organizations.

Confi dence
Managers who have seen our system rarely ask about the validity of the model being
constructed, perhaps because they are there while the model is built. Since they know
what is in the model, they do not wonder if the simulated behavior is due to some hidden
formulation. As importantly, building models from pre-existing (and previously vetted)
molecules reduces the fear that model behavior arises from idiosyncratic (or erroneous)
formulations of a particular modeler.

Speed of learning
It currently takes years for a would-be system dynamics modeler to become truly pro-
fi cient. One reason for this is that, until now, modelers have had to construct their own

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

mental warehouse of robust molecules. Our system externalizes these molecules and
makes them available through easy navigation. It seems likely that a result may be that
beginners will fi nd themselves becoming better modelers sooner. Indeed, one of the
authors taught an MBA course in which the early, primitive hierarchy of molecules was
introduced to students. The midterm exam required students to create a model of
a causal diagram within an hour and a half—a task that even advanced doctoral stud-
ents might fi nd diffi cult. In this case, however, every student completed the task
successfully.

Relaxing the skill requirements
Quite apart from the possibility of shortening the time to become an expert modeler is
the possibility that this approach will enable non-experts to create models without
hiring a professional. With predefi ned molecules, an intelligent interface providing
options for the modeler, and a process (modeling by replacement) that guarantees a
well-formed model, it is possible that building good models will require less skill. Of
course, our approach only helps with some of the skills required of a modeler. For
example, a system dynamics modeler also needs to be able to conceptualize the growing
model in terms of feedback loops. Nonetheless, it seems almost certain that the approach
described here will lower, to some extent, the hurdle to modeling.

The cost of modeling
In a prior section we noted that creating even simple system dynamics models can cost
from $25,000 to $100,000, and large calibrated models can cost an order of magnitude
more. Speeding the modeling process promises to reduce these costs (though the time
spent modeling may amount to only 25 percent of the total consultant time).

A more signifi cant saving may come from the automatic storage and cataloguing of
new molecules. When previous modeling efforts are, in effect, “cannibalized for parts”
via the automatic generation and cataloguing of molecules, the economics of simulation
modeling can change radically. As a company continues to use the approach described
here, the repository of molecules grows, making it more likely that the right molecule
will be available for the next modeling effort, and thus the cost of modeling continues
to fall.

Testing levels of aggregation
The approach makes it easier for users to test the level of aggregation of useful SD
models. Since users start from single stocks and through replacement and specialization
arrive at the resulting models, they could potentially evaluate the usefulness of further
disaggregation once a fi rst aggregated model has been completed. Hence users could
quickly disaggregate models to verify whether the resulting ones would behave differ-
ently and yield more insightful representations of reality.

Limitations

Many of the limitations we have glimpsed through our early experience with this
approach are the fl ipside of its benefi ts. For example, the fact that molecules accumulate
means that in the early stages of using our process a company will have access to only
the generic molecules that come with the system. It is only by using the hierarchy that

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

the hierarchy takes on a richness and specifi city to the organization using it. Since our
approach is most diffi cult to use at the beginning, it may face a hurdle to initial
adoption.

Clutter
Although accumulating molecules adds to the hierarchy’s richness, it can also create
clutter—a problem that we have experienced ourselves in our testing and demonstra-
tions of the system. Currently, our system automatically adds to the hierarchy a new
molecule every time a replacement is made. Some of these molecules are not useful and
need to be pruned. A solution to this problem is to make cataloguing new molecules
less automatic. Perhaps the user should be asked if the molecule merits storage.

Need for facilitation
A further concern involves the potential need for facilitation. Although we have noted
that our approach makes modeling easier, it is not clear how much easier things
will be.

While we hope that a user will not need to be a professional modeler, our use of the
tool has always involved people with signifi cant experience in all three underlying
components: system dynamics, TUI and Process Handbook. We simply do not know
what minimum level of skill is needed to make productive use of this approach. At least
initially, it is very likely that use of the system will require someone familiar with
simulation modeling and with the system itself.

Moleculitis
When we fi rst began advocating the use of molecules, one leader in the system dynam-
ics fi eld worried that it permitted naïve modelers to string together molecule after
molecule with no real justifi cation. The resulting models would grow ever larger, while
never delivering any benefi t to anyone. He termed this condition “moleculitis”. As
mentioned earlier, we have observed a little of this in classes in which we have taught
the early, primitive set of molecules. However, most students experienced an unprec-
edented jump in modeling capabilities.

The increased ease of building models that this tool provides has raised another
similar concern among some of our colleagues. Some have suggested that uninformed
modelers will be able to quickly produce poor, misleading models. In fact, similar fears
were raised about spreadsheets and iconographic modeling in system dynamics. People
worried that spreadsheets would let inexperienced programmers create lots of incom-
plete, inaccurate, inconsistent, and otherwise fl awed models. They also worried that
iconographic modeling made system dynamics models “too accessible to non-experts”,
leading to poorly conceptualized, feedback-poor, and fl awed models. To some degree
this has turned out to be true, but most people would agree that the overall benefi ts of
spreadsheets and iconographic modeling have far outweighed the harm done by the
fl awed models that people sometimes create.

Early model buy-in
While the ability to develop models quickly allows users to build and test more models,
it is possible that users may get stuck in the fi rst model that provides a solution to their

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

problem. However, since our approach allows for rapid replacement and specialization
of different structures, the possibility of being stuck with an initial model is perhaps
less problematic than in the traditional SD method. Ideally, the system could be used
to systematically explore and assess a variety of specifi c modeling choices and different
levels of aggregation.

Need for model simplifi cation
It is possible that large complicated models may result from the rapid replacement and
specialization of different molecules. While “moleculitis” also leads to large, compli-
cated models, here the resulting models may still be useful but very diffi cult to under-
stand. To improve the quality of the resulting models and understanding of model
builders (and decision makers), model simplifi cation would be fruitful after the creation
of models using our approach, as suggested by Saysel and Barlas (2006) for the tradi-
tional system dynamics method.

Analysis
In some modeling disciplines, the real benefi t of modeling comes not from the specifi c
numerical results of a simulation but from deeper analyses of the models. In system
dynamics, for example, getting a benefi t usually entails understanding which feedback
loops generate which patterns of behavior. Traditionally, analysis proceeds at least as
slowly as creating the model itself. If there were no technology to allow analysis to
proceed as quickly as a conversation, many of the collaborative and conversational
advantages of speeding the modeling would be lost. Although we have not yet combined
this capability with the other components of the system, our simulation engine today
incorporates a new method of model analysis that automatically suggests which feed-
back loops are most important to a particular pattern of model behavior (Perez-Arriaga,
1981; Forrester, 1982; Gonçalves et al., 2000). Our hope is that when combined with the
other components this new method will provide a sizeable speedup in model analysis
as well.

Open issues

An open issue to be explored in future research deals with the applicability of our
approach to different knowledge domains. We chose to do our initial exploration of
“construction by replacement” in the domain of supply chain management because we
wanted to understand how the approach would work in a relatively bounded and well-
understood setting. In this sense, we chose an “easy” domain for our initial explora-
tions, but we believe that there are a number of other areas that have been extensively
studied in system dynamics (e.g., project management) and that would be equally easy
domains in which to apply this approach. Moreover, several classic system dynamics
models (such as the capital growth model) could be readily constructed by replacement
from the taxonomy we presented here. Hybrid models including agents, genetic algo-
rithms, and other methodologies may also be modeled using our approach, but further
research is required to show examples of its applicability.

While we cannot guarantee that our approach will be easily transferable to different
knowledge domains, counter-examples (if they exist) would be extremely helpful in
understanding the limitations of the approach. We have tried ourselves to fi nd such

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

counter-examples, but we were not successful. Based on this experience, our intuition
suggests that fi nding counter-examples would be diffi cult, but it would be desirable in
future work (ours or others’) to be able to specify this intuition and if possible formulate
it as a proof.

Conclusion

We have seen in this paper how the approach of constructing simulation models by
successively replacing parts of predefi ned molecules with more specialized molecules
has the potential to substantially improve the cost, quality, and usefulness of simulation
modeling. In our work to date with applying this approach, we have developed a hier-
archy of increasingly specialized simulation molecules for system dynamics models of
supply chains. We believe that this same general approach can also be used with other
modeling disciplines besides system dynamics, but further work is needed to demon-
strate this concretely. In general, we hope that the work reported here will stimulate
others to further develop this approach and apply it more broadly to many kinds of
simulation models.

Notes

1. The primary organizing principle for the class hierarchy in most object-oriented pro-
grams is implementation inheritance, an effi cient strategy for programmers. In contrast,
our molecule hierarchy strictly enforces replacement, an effi cient strategy for compo-
nent users.

2. A DrainToZero is a stock whose outfl ow is equal to some desiredOutfl ow as long as that
outfl ow will not cause the stock to fall below zero in the next solution interval. Shipping
might be defi ned as the minimum of demand or the outfl ow that will empty the stock

in a single simulated instant (i.e., a single “dt”): shipping
finishedChips

t
demand= ⎛

⎝
⎞
⎠min ,

d
.

Biographies

Jim Hines is a system dynamics consultant with Ventana Systems and creator of the System
Dynamics Distance program at Worcester Polytechnic Institute, where he currently teaches. Jim’s
research has focused on organizational evolution, “modeling at conversation speed,” and auto-
mated model analysis. A past president of the System Dynamics Society, Jim has consulted all
over the world and holds a Ph.D. in system dynamics from MIT, and an MBA from the University
of Chicago.

Thomas W. Malone is the Patrick J. McGovern Professor of Management at the MIT Sloan School
of Management and the founding director of the MIT Center for Collective Intelligence. He was
also the founder and director of the MIT Center for Coordination Science and one of the two
founding co-directors of the MIT Initiative on “Inventing the Organizations of the 21st Century”.
His most recent book is The Future of Work: How the New Order of Business Will Shape Your
Organization, Your Management Style, and Your Life. Professor Malone has also published over
75 articles, research papers, and book chapters, been an inventor on 11 patents, and co-edited
three books.

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Paulo Gonçalves is Associate Professor of Management at the University of Lugano, Research
Affi liate at the MIT Sloan School of Management and Academic Director of the Advanced Master
in Humanitarian Logistics and Management. He obtained his Ph.D. in Management Science and
System Dynamics from MIT Sloan School of Management. His work focuses on understanding
behavioral aspects of common operational decisions. Current research interests include the
development of supply chain experiments for understanding and improving managerial decision
making. His work combines a number of techniques such as simulation, optimization, econo-
metrics and non-linear dynamics.

George Herman is a research scientist retired from MIT whose areas of expertise are in process
improvement and organizing business knowledge. He also spent many years improving logistics
information systems at a major computer manufacturer.

John Quimby has been a research scientist at MIT for the last fi fteen years. His current projects
are developing knowledge management and simulation software in the Biology Department for
biofuels and bioplastics research. While working in the Sloan School’s CCS and CCI research
centers his focus was the software development of the MIT Process Handbook and ELM. For
fi fteen years prior to MIT, John developed simulators, collaboration tools, and workfl ow products
at Digital Equipment Corporation.

Mary Murphy-Hoye is a Senior Principal Engineer at Intel Corporation. An innovator in
Information Technology and Supply Chain solutions, Ms Murphy-Hoye integrates emerging
technologies to create and implement large-scale experiments in high volume production envi-
ronments. Her most recent focus has been the creation of Intel’s RFID/Wireless Sensor Networks
Lab for industry-scale proactive computing experimentation across businesses.

Jim Rice is the Deputy Director of the MIT Center for Transportation. He also serves as the
Director of the MIT Integrated Supply Chain Management (ISCM) Program and MIT Supply
Chain Exchange. Jim’s research is focused on supply chain design, currently focused on design
for security and resilience, and recently he directed the productive Supply Chain Response
project at CTL. Currently, Jim is working with National Center for Secure and Resilient Maritime
Commerce and Coastal Environments (CSR) to develop secure and resilient maritime transporta-
tion systems.

James Patten Ph.D. is the founder and principal of the design and technology fi rm Patten Studio
LLC, based in New York. Patten designs and develops interactive tabletop systems that make
complex datasets easier to understand and manipulate. He earned his doctorate at the MIT Media
Lab where he developed the Sensetable tabletop interface platform.

Hiroshi Ishii is a tenured Professor of Media Arts and Sciences, at the MIT Media Lab. He was
named Associate Director at the Media Lab in May 2008. He co-directs Things That Think (TTT)
consortium and directs Tangible Media Group. Hiroshi Ishii’s research focuses upon the design
of seamless interfaces between humans, digital information, and the physical environment.

References

Alexander C. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press:
New York.

Alexander C. 1979. The Timeless Way of Building. Oxford University Press: New York.

System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Davis, PK, Anderson, RH. 2004. Improving the Composability of DoD Models and Simulations.
The Journal of Defense Modeling and Simulation Applications, Methodology, Technology 1(1):
5–17.

Eberlein RL, Hines JH. 1996. Molecules for modelers. In 1996 International System Dynamics
Conference, Cambridge, MA.

Fleishman E, Hemple W. 1994. Design of object oriented simulations in Smalltalk. Simulation
49: 239–252.

Forrester JW. 1958. Industrial dynamics: a major breakthrough for decision makers. Harvard
Business Review 26(4): 37–66.

Forrester JW. 1961. Industrial Dynamics. MIT Press: Cambridge, MA. (now available from Pegasus
Communications, Waltham, MA).

Forrester JW. 1968. Market growth as infl uenced by capital investment. Industrial Management
Review 9(2): 83–105.

Forrester NB. 1982. A dynamic synthesis of basic macroeconomic theory: implications for stabi-
lization policy analysis. Doctoral dissertation, MIT, Cambridge, MA.

Gamma E, Helm R, Johnson R, Vlissides J. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley: Reading, MA.

Goldberg A, Robson D. 1989. Smalltalk-80: The Language. Addison-Wesley: Reading, MA.
Gonçalves P. 2003. Demand bubbles and phantom orders in supply chains. PhD dissertation. MIT

Sloan School of Management, Cambridge, MA.
Gonçalves P, Lertpattarapong C, Hines J. 2000. Implementing formal model analysis. In 18th

International Conference of the System Dynamics Society, Bergen, Norway, July 2000.
Gonçalves P, Hines J, Sterman J. 2005. The impact of endogenous demand on push–pull produc-

tion systems. System Dynamics Review 21(3): 187–216.
Hines JH. 1996. Molecules of Structure version: Building Blocks for System Dynamics Models 1.4.

Ventana Systems and LeapTec: Cambridge, MA.
Ishii H, Ullmer B. 1999. Tangible bits: towards seamless interfaces between people, bits and

atoms. In Proceedings of Conference on Human Factors in Computing Systems (CHI ’97),
Atlanta, GA, March 1997. ACM Press: New York; 234–241.

Lalond WR, Pugh JR. 1991. Subclassing ≠ subtyping ≠ Is-a. Journal of Object- Oriented
Programming 3(5): 57–62.

Lee J, Wyner G. 2003. Defi ning specialization for data fl ow diagrams. Information Systems 28(6):
651–671.

Liskov B, Wing J. 1994. A behavioral notion of subtyping. ACM Transactions on Programming
Languages and Systems 16(6); 1811–1841.

Lyneis JM. 1980. Corporate Planning and Policy Design. MIT Press: Cambridge, MA. (now avail-
able from Pegasus Communications, Waltham, MA).

Malone TW, Crowston KG, Lee J, Pentland B, Dellarocas C, Wyner G, Quimby J, Osborn CS,
Bernstein A, Herman G, Klein M, O’Donnell E. 1999. Tools for inventing organizations: toward
a handbook of organizational processes. Management Science 45(3): 425–443.

Malone TW, Crowston KG, Herman G (eds). 2003. Organizing Business Knowledge: The MIT
Process Handbook. MIT Press: Cambridge, MA.

Meyer B. 1992. Eiffel: The Language. Prentice-Hall: Upper Saddle River, NJ.
Panko R, Halverson R. 1996. Spreadsheets on trial: a survey of research on spreadsheet risks. In

Proceedings of the 29th Annual Hawaii International Conference on System Sciences;
326–335.

Patten J, Ishii H, Pangaro G, Hines J. 2001. Sensetable: a wireless object tracking platform for
tangible user interfaces. In Proceedings of the Conference on Human Factors in Computing
Systems (CHI ‘01), Seattle, WA, 31 March–5 April 2001. ACM Press: New York; 253–260.

Perez-Arriaga IJ. 1981. Selective modal analysis with applications to electric power systems.
Doctoral dissertation, MIT, Cambridge, MA.

J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

Richardson G, Pugh J. 1981. Introduction to System Dynamics with Dynamo. MIT Press: Cambridge,
MA. (now available from Pegasus Communications, Waltham, MA).

Richmond B. 1985. STELLA: software for bringing system dynamics to the other 98%. In
Proceedings of the 1985 International Conference of the System Dynamics Society, Keystone,
CO; 706–718.

Saysel K, Barlas Y. 2006. Model simplifi cation and validation with indirect structure validity
tests. System Dynamics Review 22(3): 241–262.

Sterman J. 2000. Business Dynamics. McGraw-Hill: New York.
Vennix JAM, Andersen DF, Richardson GP. 1997. Foreword: group model building—art and

science. System Dynamics Review 13(2): 103–106.

