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Abstract

Simulation modeling can be valuable in many areas of management science, but it is often costly, time-
consuming, and diffi cult to do. To reduce these problems, system dynamics researchers have previously 
developed standard pieces of model structure, called molecules, that can be reused in different models. 
However, the models assembled from these molecules often lacked feedback loops and generated few, if any, 
insights. This paper describes a new and more promising approach to using molecules in system dynamics 
modeling. The heart of the approach is a systematically organized library (or taxonomy) of predefi ned model 
components, or molecules, and a set of software tools for replacing one molecule with another. Users start 
with a simple generic model and progressively replace parts of the model with more specialized molecules 
from a systematically organized library of predefi ned components. These substitutions either create a new 
running model automatically or request further manual changes from the user. The paper describes our 
exploration using this approach to construct system dynamics models of supply chain processes in a large 
manufacturing company. The experiment included developing an innovative “tangible user interface” and 
a comprehensive catalog of system dynamics molecules. The paper concludes with a discussion of the ben-
efi ts and limitations of this approach. Copyright © 2010 John Wiley & Sons, Ltd.

Syst. Dyn. Rev. (2009)

Introduction

Simulation models have been used with substantial success for decades in many areas 
of management science, from factory scheduling to fi nancial forecasting, to supply 
chain planning to market analysis. One of the most important barriers to wider use of 
simulation modeling, however, is the diffi culty of creating simulation models in the 
fi rst place. Developing useful models often requires experienced modelers as well as 
signifi cant amounts of, time, money, and effort.

In an attempt to improve quality and reduce the resources needed for modeling, 
system dynamics researchers (including Richardson and Pugh, 1981; Lyneis, 1980; 
Richmond, 1985; Hines, 1996) previously developed a number of standard pieces of 
structure (called molecules) to address frequently encountered modeling problems. The 
fi rst formal compilation of system dynamics molecules (Hines, 1996) was based on 
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specialization inheritance, borrowing directly from object-oriented programming (e.g., 
Goldberg and Robson, 1989). Teachers who used these molecules in their intermediate 
system dynamics classes at MIT saw students’ knowledge of standard system dynamics 
structures improve. However, the derived models often lacked feedback loops and gen-
erated few, if any, insights.

This paper describes a new approach to using molecules in system dynamics model-
ing. The heart of the approach is a systematically organized library (or taxonomy) of 
predefi ned model components (or molecules) and a set of software tools for progressively 
replacing one molecule with another. The framework allows users to rapidly build 
system dynamics models by replacing parts of models with more specialized versions 
of the same parts. For instance, the framework lets users successively develop models 
from causal loop diagrams, a process that has been traditionally diffi cult to teach effec-
tively to students. We demonstrate the framework’s capability by building one useful 
system dynamics model, and we describe a general approach to applying the framework 
in other situations.

While related ideas have been used in previous simulation systems for years (e.g., 
Goldberg and Robson, 1989; Meyer, 1992; Fleishman and Hemple, 1994), this approach 
takes the basic ideas further than any previous efforts. For instance, our approach has 
“designed-in” the composability of molecules and, by extension, models. This designed-
in composability helps assure that assembled and recombined components satisfy user 
requirements meaningfully (Davis and Anderson, 2004).

In addition, the molecule hierarchy proposed here allows users to see the structural 
connections among molecules when they are deciding which replacements to make. 
This ability to see structural connections makes it easier for users not only to create 
new molecules but also to see where one molecule can be replaced with another one. 
Moreover, the molecule hierarchy has been designed to allow molecules to fi t together 
in a seamless way after such replacements have been made.

Finally, the hierarchy makes it especially easy to rapidly construct simulation models 
using either a conventional graphical user interface (i.e., a mouse and screen) or a novel 
“tangible user interface” (Ishi and Ullmer, 1999), where users manipulate actual physi-
cal objects on a special table.

While this approach is not a “magic bullet” that makes the creation of simulation 
models instantaneous and effortless, it has the potential to signifi cantly increase (a) 
the speed with which new simulation models can be created, (b) the “correctness” 
of those models, (c) the number of people who can create simulation models for them-
selves without requiring the assistance of professional programmers and modeling 
experts, and (d) the use of simulation mode ling for facilitating conversations and 
collaboration.

To develop our approach, we conducted a substantial multi-year investigation to 
construct system dynamics simulation models (e.g., Forrester, 1961; Sterman, 2000) of 
corporate supply chains. This paper summarizes the results of that investigation. It 
describes (1) the comprehensive library of system dynamics molecules we developed, 
and (2) the software tools we used to combine and refi ne these molecules. Of particular 
interest is the fact that our library of system dynamics molecules constitutes a “periodic 
table” of the elements used in constructing any system dynamics model. In addition, 
since the library is open-ended, new combinations of these elements can always be 
added as they are identifi ed. In fact, our process for constructing models actually aids 
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in placing new molecules in their proper places in the “periodic table”. We illustrate 
the use of this approach with a hypothetical usage scenario based upon our extensive 
analysis of the supply chain of a large manufacturing company (further described in 
Gonçalves, 2003; Gonçalves et al., 2005). The paper concludes with lessons about how 
this approach can be applied with other kinds of simulation and in other situations.

Background

Before describing our approach in more detail, it is useful to review the fundamental 
idea of reusable components in computer science as well as the diffi culties in the 
current practice of simulation modeling.

Reusable software components

Computer scientists have noted for decades that different computer programs in the 
same general domain often have many commonalities. In fact, much of the progress in 
computer science can be seen as successive ways of cap turing these commonalities in 
reusable tools like compilers, operating systems, subroutine libraries, and graphics 
packages. In this way, different programmers can reuse the standard features these tools 
provide, rather than having to reinvent them each time the features are needed. In 
computer science, such general reusable solutions are often called design patterns, after 
the architectural concept coined by Christopher Alexander (1977, 1979). Design patterns 
gained currency in computer science after the book Design Patterns: Elements of Reus-
able Object-Oriented Software (Gamma et al., 1995) was published.

While most of these reusable components have been organized in “fl at” collections, 
one particularly important approach, object-oriented programming, employs a “deep” 
approach. In an object-oriented environment such as Smalltalk, C++, or Java, the reus-
able components are classifi ed in an inheritance hierarchy where “child” components 
automatically “inherit” properties of their “parents”. The specialization relationship is 
called an is–a relationship. “A is-a B” means that A is a specialization of B, and B is a 
generalization of A. For instance, a “car” is-a “vehicle,” and “vehicle” is a generalization 
of “truck”, “car”, and “bus.” In an is-a relationship, the “child” class inherits all the 
properties of its parent. For instance, cars inherit properties from vehicles, such as 
moving in a certain way.

Even though the goal of creating simulation models was historically important in the 
development of some of the fi rst object-oriented programming languages (e.g., Simula 
and Smalltalk), most modern simulation languages still use collections of “fl at” com-
ponents from which programmers can choose using icon-based mouse-enabled graphi-
cal user interfaces.

Diffi culties in the current practice of simulation modeling

Even though simulation models have the potential to be extremely useful, they are often 
diffi cult to create. For example, most people can create for themselves only the simplest 
and least fl exible form of simulations: spreadsheets models. Professional modelers or 
programmers are almost always needed to create other common kinds of simulations 
(e.g., discrete event, system dynamics, and agent-based simulations).
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The diffi culty of creating simulation models is also refl ected in high costs and error 
rates. A small professional system dynamics effort, for instance, will typically cost from 
U.S. $25,000 to $100,000; large efforts can range into the millions (Dalton, pers. comm. 
2003; Eberlein, pers. comm. 2003). As for error rates, Panko and Haverson conclude in 
their survey of studies of spreadsheet models that “every study that has looked for errors 
has found them in signifi cant numbers” (Panko and Halverson, 1996, p. 4).

Exacerbating the problem of the high cost of model creation is the low opportunity 
to amortize the investment over multiple problems or questions. In fact, surprisingly 
few models, including very costly ones, are ever employed again after the original 
problem has been solved. This means that the entire fi nancial burden of building a new 
model must be borne by the potential benefi t of solving only the current problem.

The effort to compile a hierarchy of “molecules” capturing standard structures in 
system dynamics had its motivation in object-oriented programming (Hines, 1996). The 
goal was to allow users to create simulation models faster, more accurately, and with 
more reusability. However, even before the explicit effort to create a hierarchy of mol-
ecules, standard structures were developed in seminal papers and tended to get 
repeated in models without attribution. Many of the fi rst standard structures (or “mol-
ecules”) appeared in Jay Forrester’s writings in system dynamics (Forrester, 1958, 1961). 
Industrial dynamics (Forrester, 1961) had molecules built into its DYNAMO software 
(e.g., level equations, fi rst- and third-order smoothes, and material delays). Also impor-
tant was the market growth model created by Dave Packer working with Jay Forrester 
(Forrester, 1968). In addition, the project model, originally developed by Henry Weil, 
Ken Cooper, and David Peterson around 1972, contributed a number of important mol-
ecules. Jim Lyneis’ book (Lyneis, 1980) contained important structures for corporate 
models. Equally important was the treasure trove of good structures in the MIT National 
Model, to which many people contributed, including Alan Graham, Peter Senge, John 
Sterman, Nat Mass, Nathan Forrester, Bob Eberlein, and of course Jay Forrester. George 
Richardson and Jack Pugh described a number of commonly occurring rate and stock 
equations in their excellent book (Richardson and Pugh, 1981). Adopting the term 
“atoms of structure”, Barry Richmond (1985) described a number of common rate struc-
tures in his paper describing STELLA, the fi rst graphical system dynamics modeling 
environment. Barry Richmond and Steve Peterson continued to present useful small 
structures in the documentation for STELLA and its sister product iThink. And, mis-
remembering the term “atoms of structure”, one of the authors of this paper used the 
term “molecules” in his initial attempts to extend and categorize these structures 
(Hines, 1996).

As the description above suggests, the idea of molecules per se is not new in system 
dynamics. However, the effort to compile them in a hierarchy is. The original molecule 
hierarchy (Hines, 1996) allowed more people to have access to standard structures dis-
seminated in the system dynamics literature. Because the original molecule hierarchy 
emphasized a specialization inheritance and in particular is-a relationships, it was very 
effective for teaching purposes. For instance, if students understood the concept of a 
parent (e.g., a vehicle), it was much simpler to grasp new concepts for its children (e.g., 
cars or trucks). However, while the original molecule hierarchy helped improve stu-
dents’ knowledge of standard system dynamics structures and accelerate their ability 
to build system dynamics models, the resulting models often lacked feedback and gen-
erated few, if any, insights.
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While it was possible to explore the replacement aspects of inheritance in the original 
molecule hierarchy, this traditionally was not done. Also, a replacement hierarchy 
requires the ability to “plug-and play” molecules (where a child that replaces its parent 
still allows the model to run). The original molecule hierarchy was not designed for 
this purpose, and attempts to use it in this way would have required major redesign.

The current version of the molecule hierarchy has undertaken such redesign. It 
expands the original set of molecules and facilitates replacement though a new tax-
onomy showing the connections between molecules. This new taxonomy also purpose-
fully helps users see the structural con nections between molecules. Our experience 
with this new taxonomy is limited (as described below, we built only one major model). 
But based on this experience, we believe that this taxonomy has the potential to sub-
stantially reduce the time, cost, and effort in creating system dynamics simulation 
models.

Our approach

The key to our approach is making it especially easy for people to refi ne and combine 
predefi ned components (or “molecules”) into new models. The three prerequisites nec-
essary for our approach are (1) a systematically organized catalog of predefi ned mole-
cules, (2) automatic tools to help users replace parts of an existing molecule with more 
specialized versions of the same parts, and (3) automatic tools for storing and catalogu-
ing new molecules.

A systematically organized catalog of predefi ned molecules

In chemistry, a molecule consists of a certain number of more elementary parts, either 
atoms or other molecules, and a set of linkages between these parts (i.e., chemical 
bonds). Similarly, in our approach to simulation modeling, a “molecule” consists of a 
number of more elementary parts, which are themselves (simpler) molecules, and a set 
of linkages between these parts. For example, a simple supply chain model might 
include molecules for production planning, manufacturing, assembly, and shipping 
fi nished goods. The molecule for production planning might, in turn, include molecules 
for storing materials in a warehouse and placing orders when the warehouse inventory 
levels reach a certain point. We require that all individual molecules be “run-able” so 
technically a molecule is a simulation model that can be a component in a larger simu-
lation model. Because any model can be a component in a larger model, it is also true 
that a model is a molecule. We will use the term “molecule” when we wish to emphasize 
the building block nature of things, and we will use the term “model” when we wish 
to emphasize a usefulness beyond “just” being a component of something larger.

Before describing how we systematically organize catalogs of molecules, it is useful 
to see some detailed examples of molecules. Since we have applied our approach using 
system dynamics models, we will use system dynamics molecules for this purpose. 
System dynamics models are basically systems of nonlinear differential equations. 
In the system dynamics graphical notation, a stock (mathematically, an integral) is 
represented as a rectangle, a stylized bathtub. A fl ow (i.e., a partial derivative with 
respect to time) is represented as a double arrow, a stylized pipe. A policy (decision 
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rule) controlling a fl ow is represented as a stylized “valve” (often depicted as a simple 
hourglass shape) on a pipe, and sub-policies are represented as labels connected by 
information links depicted as skinny, curved arrows (“telephone wires”). All fl ows are 
conserved; that is, every fl ow comes from one stock and goes into another. When the 
stock in question is beyond the scope of a model, a cloud, instead of a rectangle, is used. 
Figure 1 illustrates the symbols.

As an example, Figure 2 shows the system dynamics material delay molecule. A 
material delay is a relatively low-level component that is available as a function in most 
system dynamics simulation environments. Very simply, a material delay allows a 
modeler to create a fl ow (outfl ow) that is a delayed version of another fl ow (infl ow).

Mathematically, a material delay is a fi rst-order linear, non-homogeneous, fi xed-
coeffi cient differential equation. It is defi ned by the following equations:

d
dt

Stock low outflowt t t= −inf

outflow
Stock

imeConstant
t

t=
t

Dynamically, the outfl ow is an exponentially smoothed and exponentially delayed 
version of the infl ow, which comes from elsewhere in the model. A stock accumulates 
the difference between the infl ow and the outfl ow, ensuring that everything that goes 
in eventually comes out and nothing more. As an example, a modeler might use a mate-
rial delay to represent the lag in realizing cash from accounts receivable. Dollar sales 
would be the infl ow into the stock of accounts receivable. Flowing out of accounts 
receivable (and into the stock of cash) would be “cash fl ow”, a delayed version of dollar 
sales equal to accounts receivable divided by the average delay (the timeConstant).

Stock
policy

sub-
policy 1

sub-
policy 2

information
Input 1

information
Input 2

Fig. 1. Symbols used in system dynamics stock-and-fl ow diagrams

Fig. 2. System dynamics material delay molecule
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Arranging molecules in a specialization hierarchy
Having predefi ned, reusable components can be useful in almost any software deve-
lopment endeavor and in particular in the creation of computer simulation models. 
The power of our approach, however, depends on converting these fl at components 
into deep components that are related to one another in a very specifi c, systematic 
way.

In our case all the predefi ned molecules are arranged in a specialization hierarchy 
where each item is classifi ed as a subtype (a kind of specialization) of one or more other 
items. Each item can also, in turn, have its own subtypes. In fact, it is possible to clas-
sify any simulation model, regardless of its complexity, somewhere within this special-
ization hierarchy, and all of its component parts can also be classifi ed somewhere 
within the hierarchy too. (See Malone et al., 1999, for an extensive description of the 
type of specialization hierarchy we use.)

For example, Figure 3 shows a unifi ed modeling language (UML) class diagram of a 
small subset of the specialization hierarchy around the material delay molecule 
described above. Readers can fi nd a full description of the replacement hierarchy at 
web.mit.edu/~paulopg/www/.

The basic element is the system dynamics (SD) molecule. The basic SD molecule has 
three important subtypes: stocks (i.e., accumulations), fl ows (which fi ll or deplete 
stocks), and policies, which control fl ows (cf. Forrester, 1961, pp. 93 ff.). To understand 
the hierarchy in more detail, it is useful to focus on a single chain (see, for example, 
Figure 4).

A stock can have any number of infl ows and outfl ows. Figure 5 shows that a bathtub 
is a specialization of a stock. In fact, a bathtub is a stock that has a single infl ow and a 
single outfl ow.

The material delay (as shown in Figure 2) is a specialization of a bathtub. The mate-
rial delay uses a specifi c outfl ow, namely a decay outfl ow. The decay outfl ow is itself a 
molecule, with its own place in the hierarchy (see Figure 3).

An aging chain is a disaggregation of a (fi rst-order) material delay into an nth-order 
one, where each outfl ow from a sub-material delay fl ows into the next sub-material 
delay. For example, a third-order material delay appears in Figure 6. Each of the dis-
aggregated time constants would normally be set to one-third the original 
timeConstant.

Finally, a modeler might specialize the aging chain by changing the names and units 
and by giving different values to each of the disaggregated time constants. In so doing, 
the modeler might create a crude representation of a sequential supply chain 
(Figure 7).

This specialization, created by a modeler, is a running model and has its own place 
in the specialization hierarchy (see Figures 3 and 4).

One advantage of arranging components in hierarchies like this is the resulting ease 
with which users can fi nd the components they need, even in very large collections of 
components. A user who understands the specialization hierarchy will know, 
for example, that an aging chain must be near the material delay and the material 
delay must be near the bathtub. Another important advantage of a hierarchy is 
that it simplifi es the creation of new models by allowing one to build up a more 
specialized (often larger) model by replacing elements in a less specialized (often 
smaller) one.
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Modeling by replacement

Readers familiar with the notions of inheritance in object-oriented programming will 
immediately see the similarities between these concepts and the concept of specializa-
tion as we are using it here. Our use of specialization, however, differs in two important 
ways from the way that inheritance is typically used in most object-oriented program-
ming languages. First, the items that are specialized in typical object-oriented program-
ming are often “objects”, not “actions”. In many simulation models, however, the items 
of primary interest are the actions (“verbs”) whose effects are being simulated, not the 
objects (“nouns”) upon which those actions operate. Our specialization hierarchies 
inherit down a hierarchy of “verbs” as well as “nouns”, and this provides substantial 
power and fl exibility for creating simulation models. (See Malone et al. (1999) and Lee 
and Wyner (2003) for extensive discussions of this issue.)

In addition, our approach requires that the specialization hierarchy of molecules be 
arranged in such a way that replacing a molecule with any of its specializations still 
results in a mathematically and conceptually valid simulation model.1 For example, in 
a system dynamics model, you can always replace a bathtub with an aging chain and 

Fig. 4. A small “chain” of the specialization hierarchy

Stock
inflow outflow

Fig. 5. The bathtub molecule

Sub-
Stock1

Sub-
Stock2

Sub-
Stock3

inflow sub
Flow1

sub
Flow2

outflow

time
Constant1

time
Constant2

time
Constant3

Fig. 6. The aging chain molecule

Factory Warehouse
manufacturing

manufacturing
CycleTime

starts selling

selling
Time

Assembly
assembling

assembly
Time

Fig. 7. A simple sequential supply chain
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still have a valid model. In other words, the specialization hierarchy must have the 
following formal property (see, for example, Liskov and Wing, 1994; Lalond and Pugh, 
1991):

Substitution property: If S is a mathematically valid molecule whose parts are the 
molecules Mi (for i = 1, . . . , n), and Mi′ is a specialization of Mi, then replacing Mi 
with Mi′ in S results in a molecule S′ which is also a mathematically valid 
molecule.

When this property holds, users can refi ne subparts of a model and have the new sub-
parts automatically substituted into the overall model. Naturally, the user must still 
choose a specialization that is an appropriate representation of the environment being 
modeled. While our approach cannot guarantee that users will choose appropriately, 
the list of specializations provides a framework which allows users to compare the 
resulting models with the environment. The challenge for inexperienced modelers 
shifts from “How do I model this decision?” to “Which specialization is closest to this 
decision?”

The specialization hierarchy makes molecule refi nement straightforward. Users can 
select any element of a model (e.g., by clicking on it), and immediately see all the pos-
sible specializations of this element. Then, if the user selects one of these specializations 
and invokes the “replace with specialization” action, the system automatically substi-
tutes the specialized version of the element in place of the original version. For example, 
a fi nancial model might represent accounts payable as a material delay. A click would 
replace the material delay with an aging chain, in order to separate payable accounts 
into “buckets” of different ages.

In many cases, the system can automatically make all the necessary connections so 
that the new model is a completely valid simulation model. In the example immediately 
above, the infl ow to the old material delay would be the infl ow to the new aging chain. 
Any component that used the outfl ow from the original material delay would receive 
instead the outfl ow from the new aging chain. Components that depended on informa-
tion about the single stock of receivables in the old formulation would automatically 
get information on the sum of the buckets in the aging chain. When the system cannot 
itself make the necessary connections, however, it can at least automatically call the 
user’s attention to the places where further actions are needed to make the model a 
mathematically valid one. For example, when replacing a policy with a goal-gap, there 
may be more than one candidate for the goal. In this case, as discussed below, the system 
will create a “reaction object” (a sort of place-holder), which the user can easily connect 
to one of the valid alternatives in the model. Once again, the user must choose the 
appropriate goal from the set of valid alternatives. While there is little doubt that mod-
eling experience will help in the choice, the list of alternatives allows users to easily 
compare the choices.

This process of replacing parts of a model with more specialized versions of the same 
parts can, of course, be repeated many times in different parts of the same model. It is 
often desirable, for instance, to make a substitution in one part of an overall model and 
then make further substitutions inside the subparts (i.e., “sub-molecules”) of the mol-
ecule that has just been added. In this way, users can create arbitrarily complex models 
simply by making repeated substitutions in a single starting model. At each step along 
the way, they have a valid model, and all they ever have to do is select from the 



J. Hines et al.: Construction by Replacement

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

alternatives that are automatically presented to them by the system. They never have 
to write a single line of textual specifi cation (“programming”) as they would in almost 
all other simulation environments today.

Library expansion as a byproduct of modeling

Replacement hierarchies can be formed so that modeling by replacement creates an 
expanding library of molecules available for future modeling efforts. All that is required 
is a natural extension of the substitution property. If we view the tree of all specializa-
tions of a molecule as a set, then the extension is simply to ensure that the set of spe-
cializations is closed under the operation of replacement:

Substitution property with closure: If S is a mathematically valid molecule whose 
parts are the molecules Mi (for i = 1, . . . , n), and Mi′ is a specialization of Mi, then 
replacing Mi with Mi′ in S results in a molecule S′ which is also a mathematically 
valid molecule and which is a specialization of S.

In other words, the new molecule S′ can be immediately “shelved” under its generaliza-
tion, the old molecule S. This cataloguing and storage function is easily automated. For 
example, say we change the sequential supply chain model of Figure 7 by substituting 
a specialization of the outfl ow. We immediately create a specialization of the original 
supply chain model. The specialization is located right “beneath” the original supply 
chain model. If we have a larger industry model of which the original supply chain 
model was a component, we can now replace the original supply chain model with its 
new specialization. This will create a new specialization of our industry model, which, 
in turn, could replace the old industry model in a yet larger model of an economy.

The use of deep components with the closed substitution property creates a rapid and 
less error-prone process of model creation that continually produces new, properly cata-
logued specializations of prior molecules, and which ultimately results in the model 
itself also becoming part of the specialization hierarchy, properly catalogued and avail-
able for future use. For many common simulation approaches (including system dynam-
ics), we believe it is possible to construct “complete” taxonomies from which any 
possible mathematically valid model can be constructed by making successive replace-
ments in the way just described. The approach we have described can still speed and 
simplify some (often, most) of the model creation task, even when such a complete 
taxonomy cannot be constructed.

Implementing the approach

To develop and test this approach, we applied it to system dynamics simulation models 
of supply chains. We also used a new generation of tangible user interfaces (Patten 
et al., 2001), which we describe briefl y below. The supply chain domain was an obvious 
choice. First, the manufacturing company with which we worked closely in this project 
is known for its supply chain expertise, and our closest associates at this company 
included people with signifi cant knowledge of the supply chain. Second, the focus on 
supply chains permitted us to apply our ideas in an area where the need for better 
alignment and integration is widely recognized by both managers and academics.
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An important goal of our project was to develop simulation environments that could 
be easily used, not just with traditional graphical user interfaces but also with a new 
generation of “tangible user interfaces” (Ishii and Ullmer, 1999). In general, tangible user 
interfaces move beyond pointing to words and pictures on computer screens and, 
instead, let users see and manipulate three-dimensional physical objects in the real 
world. Such interfaces can have several of these three-dimensional physical objects. 
Consequently, tangible user interfaces seem particularly attractive for the kind of col-
laborative model building that may prove useful in domains such as supply chains.

We chose to use system dynamics models in this project for four reasons. First, system 
dynamics possesses few primitive components (e.g., stocks, fl ows, and policies) so it 
seemed likely that the process of replacement would usually work in a system dynamics 
model. Second, a number of common modeling structures in system dynamics are 
already recognized within the fi eld. These common formulations make a good start on 
a comprehensive set of molecules. Further, system dynamics is particularly well suited 
to the central challenge facing people who manage and study supply chains: under-
standing and improving the performance of a system considered as a whole. Finally, 
the notion of collaborative model building is already well established within the system 
dynamics fi eld (e.g., Vennix et al., 1997).

The particular tangible user interface developed in this project, known as the Sense-
table, allows users to move special physical objects (called “pucks”) around on a special 
table that senses the location of the pucks, while computer-generated colors, words, and 
pictures are projected from above onto the pucks and table (Figure 8). While our 
approach to developing simulation models does not depend on using such a tangible 
user interface, we believe our approach is especially well suited to taking advantage of 
this new generation of computer user interface.

In order to apply our approach here, we needed to develop the three key elements of 
our approach described in the previous section: a systematically organized library of 
molecules, a way of replacing parts of molecules, and a way of automatically cataloguing 
new molecules into the library.

A systematically organized library of predefi ned molecules

To develop the library of molecules for system dynamics models, we started with an 
earlier hierarchy of 50 common components of system dynamics models (Eberlein and 
Hines, 1996; Hines, 1996).

Because this earlier hierarchy did not strictly enforce the substitution properties 
described above, our fi rst step was to reorganize the molecules into a specialization 
hierarchy with the property of substitution with closure. At the “top” of our new 
replacement hierarchy we put three basic types of molecules: Stocks, Flows, and Policies 
(see Figure 3). Stocks are accumulations of physical things or information; Flows carry 
physical things or information into and out of stocks; and Policies are the decision rules 
which control the fl ows.

A new hierarchy reveals new molecules
With these three fundamental categories, we turned to categorizing the 50 original 
molecules and discovered that the pre-existing structure had some signifi cant leaps in 
degree of abstraction. For instance, the Stock Protected By Stock molecule differed from 
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a stock molecule by defi ning an outfl ow that was kept below a maximum value in order 
to ensure that the fl ow would not take the stock below zero. The maximum value for 
the fl ow was calculated as a user-defi ned function of the stock: Outfl owt = f(Stockt) × 
IndicatedOutfl owt. The function f(·) equals 1 as long as the stock is above a critical value 
(the “desired stock”) so that, when unconstrained, the outfl ow is equal to the indicated 
outfl ow. Below the critical value, the function goes to zero as the stock goes to zero. In 
the new hierarchy, the direct connection between stock and its child would have meant 
that this particular outfl ow type would descend directly from an undifferentiated fl ow. 
But a number of other kinds of fl ows—less general than an undifferentiated fl ow, but 
more general than this particular fl ow—could be conceptualized as intervening: Flow 
outfl ow → Outfl ow Below Maximum → Outfl ow Protected By Stock.

As illustrated in Figure 9, the new structure “opens up” the hierarchy so that other 
molecules can be inserted in their rightful place by asking the question: How else do 
system dynamics modelers represent outfl ows that are below a maximum? A pre-
existing molecule, Outfl ow Protected By Flow easily fi ts, and it was moved from its prior 
parent, Decay. We realized another formulation—DrainToZero,2 which drains a stock 
until it is zero and then stops draining—was also widely used, even though it had 
escaped notice during the earlier attempt at hierarchy building. This was one way in 
which the new hierarchy fostered the identifi cation of new molecules.

Another way our replacement hierarchy helped us discover missing molecules 
involved the idea of collectively exhaustive specialization (CES). Because replacement 
(or subtype) hierarchies are based on meaning or concept, one can ask the question 
whether a set of specializations covers the entire concept represented by their common 
parent. For example, having the molecule Outfl ow Below Maximum raises the question 
whether there should be a molecule for Outfl ow Above Minimum. We believe such a 
molecule would not be found in most practitioners’ mental warehouses of tried-and-true 
structures. Nonetheless, a formulation can be easily created and is actually useful in 
representing, say, a container (e.g., a warehouse) of fi xed volume. When the container 
is full, the outfl ow has to be at least equal to the infl ow. CES, in this case, led to the 
creation of a “new” molecule—one that was not widely recognized before this work.

As we applied these processes of fi lling in the chain and looking for collectively 
exhaustive specializations, the original set of 50 molecules grew to over 200. By 

Fig. 9. Outfl ow Protected By Stock and a portion of the new taxonomy
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systematically organizing molecule types into a replacement hierarchy, we created 
knowledge about the range of possible elements in a simulation model. In this sense, 
our approach is similar to the periodic table of the elements in chemistry, which high-
lighted the potential existence of new elements even before they were discovered.

Obviously, 200 molecules would overwhelm a fl at-component, icon-based architec-
ture. Interestingly, the same taxonomic system that allowed us to expand the number 
of molecules also keeps them ordered and available to anyone familiar with the tax-
onomy. In this use, the taxonomy is something like the Dewey decimal system. If 
you know the kind of molecule you need, you can go to the proper shelf to fi nd it; and, 
if the molecule is missing, you know that specifying it will be a contribution to the 
fi eld.

Modeling by replacement

The hierarchy of system dynamics molecules was stored in a systematically organized 
online knowledge base called the Process Handbook (see Malone et al., 1999, 2003), 
which already included extensive facilities for manipulating and viewing textual and 
graphical descriptions of processes arranged in specialization hierarchies and a pre-
existing library of over 5000 business activities and processes. The Process Handbook 
also already included capabilities for replacing an element in a business process with 
one of its specializations by simply selecting from a menu of the possible alternatives. 
As part of this project, we augmented these existing capabilities of the Process Hand-
book with additional capabilities to store and manipulate mathematical equations and 
to display system dynamics models using stock-and-fl ow symbols.

In addition, the Process Handbook can store substantial information about each of 
the alternative specializations of an item. Thus the handbook can prompt users who do 
not immediately know which choice they want to make for a given replacement. We 
extended this capability to store molecule-relevant information, such as units as well 
as information about how a molecule can replace a parent. For example, when replacing 
an original bathtub (Figure 5) with an aging chain (Figure 6), the handbook “knows” 
that the infl ow to the original bathtub should become the infl ow to the aging chain and 
that the aging chain’s outfl ow should replace the outfl ow of the original bathtub. 
The handbook also knows to propagate the physical units (e.g., ‘barrels of wine’) as well 
as the time unit (e.g., ‘months’) from the original bathtub to the new aging chain.

In many cases, as soon as a user selects a replacement, the system automatically makes 
all the necessary connections so that the resulting model is conceptually valid and 
completely functional. In other cases, the system makes most of the necessary connec-
tions and substitutions, but additional user action is required to make a completely 
functional model. In these cases, the system creates and displays one or more of what 
we call “REAction objects” (short for “Required Editorial Action objects”). For example, 
when a modeler replaces a Stock, representing an inventory, with a Monitored Stock 
(i.e., one with a goal attached), information concerning the gap between the stock and 
its goal could go to the downstream supplier, the upstream pricer, or both. The REAc-
tion object focuses the modeler’s attention on that choice.

As part of this project, we implemented all the capabilities we have just described 
for tangible user interfaces (TUIs) (Patten et al., 2001) as well as graphical user interfaces 
(GUIs). In TUIs, for instance, instead of showing menus of alternative replacements on 
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a screen and letting users make selections with a mouse, the menus are projected onto 
the special table, and users make selections by moving a special “puck” on the table.

Library expansion as a byproduct of modeling

As one molecule is replaced by another, a series of specializations are made. Each new 
specialization is itself a molecule. Because the molecule resulted from a specialization, 
the system has the information of where to place the molecule in the hierarchy at the 
time the molecule is created. Our system automatically places every new molecule into 
its proper place in the hierarchy.

Scenario of use

To help visualize the usefulness of this approach, imagine the following scenario, based 
upon our analyses of actual supply chain issues in the large manufacturing company 
we studied. Since our system is not yet robust enough for daily use in remote sites, the 
scenario described here is a hypothetical description of how a system like ours could, 
in the future, be used in practice. The specifi c characters and events are fi ctional.

The scenario involves three people from a semiconductor manufacturing company: 
Manny, the manufacturing manager; Polly, the planner; and Warren, the warehouse 
manager. Their collaboration is central to performance, but they seldom fi nd a time or 
a setting conducive to that collaboration. Earlier Manny had confronted Polly with a 
disturbing pattern of dramatic oscillations in plant utilization: back and forth from very 
heavy to very light. Polly responded by saying she was reacting to erratic requests from 
Warren in the warehouse. Warren, reached by telephone, reported that he frequently 
had to scramble because of the unpredictable, stop-and-go nature of deliveries from 
Assembly.

The three managers decide to meet in the “war room”, a converted conference room 
that is the home of a system similar to the one we have developed. The most visible 
part of the system is the equipment for the TUI: a medium-sized table with built-in 
sensor technology, an LCD projector mounted from the ceiling projecting onto the table, 
and a box of small disks (about 1.5 inches in diameter), called “pucks”.

Polly begins by putting a puck down on the table to represent the beginning of a 
model of the company’s supply chain. The system projects onto the table several pos-
sible specializations of this generic element, and Polly picks a bathtub (see Figure 5, 
above). The symbol for a bathtub is then projected on the puck. Next Polly says that the 
stock represents all of the stock in the company from manufacturing through assembly 
and including the warehouse. She specifi es the units by typing “chips” on a keyboard. 
The system then asks her what units she wants to use to measure time. She chooses 
“weeks”, and the system automatically sets the units on the infl ow and outfl ow to be 
“chips per week”. Polly then turns the knob on top of the puck to set the initial value 
of the chips in the system. She guesses that there are 20 million chips in the system. 
Then she takes a new puck from the box, puts it on the infl ow valve, and turns the knob 
to represent an infl ow of 900,000 units per week, saying “That’s about what I’m starting 
right now.” Next Warren takes another puck from the box, sets it on the outfl ow, and 
dials in 1 million chips per week, explaining that that was about the current rate of 
shipments.
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Now, Manny says he would prefer to see his own manufacturing plant separated from 
the assembly plant and from the warehouse, so he replaces the bathtub with an aging 
chain, one of the specializations of bathtub, though not a direct one (see Figure 6). To 
do this, he takes a special puck— used for doing replacements—and puts it on the 
bathtub. In response, the system projects on to the table a list of potential specializa-
tions of bathtub and Manny moves the special puck to the one called Aging Chain and 
types in new labels: Factory, Assembly and Warehouse (see Figure 7). Manny also speci-
fi es that factory currently has around 10 million chips, whereas Assembly and Ware-
house have 5 million each. He also sets manufacturing Cycle Time to 10  weeks, and 
Assembly Time and Selling Time to 5 weeks each.

Behind the scenes, the system automatically generates a new model at each step, 
simulates it, and projects the results on to the table. After the last step above, the Sense-
table shows a diagram like the one in Figure 10 and the simulation engine has the 
following model:

d
d
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T

starts manufacturing= −

starts = 900 000,

manufacturing
Factory

manufacturingCycleTime
Factory

t
t t= =
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t
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t
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5

Factoryo = 10,000,000; Assemblyo = 5,000,000; Warehouseo = 5,000,000

Note that the system automatically sets the value of the infl ow to be the same as the 
infl ow to the original bathtub. In addition, the system automatically propagates the units 
through the more complicated structure. With the model equations, infl ow, and initial 
conditions specifi ed, the system generates the dynamic behavior shown in Figure 11.

Polly says that she does not actually keep starts constant at 900,000, but instead is 
continually smoothing production requests coming from upstream. Using the pucks, 
the smooth molecule and a few quick gestures, she alters the diagram accordingly 
(Figure 12).
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Fig. 10. First three actions in scenario

Fig. 11. Simulating model after fi rst three replacements

Fig. 12. The production manager smoothes production requests
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The warehouse manager says that he would not allow the warehouse inventory to fall 
as it does in Figure 11. Instead, he would request that production be increased to elimi-
nate the shortfall between the desired and the actual position of the warehouse. While 
the warehouse manager, using a goal-gap molecule (see Figure 3), makes the required 
substitutions, Polly observes that the warehouse request is one component of total 
requested production, explaining that the other component, information on shipments, 
represents production required to replace what is being sold. As the warehouse manager 
fi nishes his modifi cation, Polly put in hers, leading to the model diagram in Figure 13.

Eventually the three managers arrive at a model that oscillates (Figure 13) and, in so 
doing, realize that their well-meaning policies for factory starts and warehouse control, 
although quite reasonable in themselves, combine with the factory cycle time to produce 
cyclical ups and downs in all inventories as well as in all fl ows (e.g., starts, manufac-
turing, assembling, and selling). Interestingly, Polly’s well-meaning attempt to smooth 
production actually increases system-wide instability.

Based on this new shared understanding, the three managers continue using the 
technology to design policies that not only work well in isolation but also work well 
together. When the new policies are implemented, the supply chain operates more 
smoothly with less waste, less disruption and, not incidentally, less wear and tear on 
the managers involved. The managers know that the future will bring changes and, 
eventually, the need for further redesign. But, because their model was automatically 
stored as a molecule in its proper place within the hierarchy, any subsequent redesign 
will pick up where the three managers previously left off.

Discussion

Firm conclusions concerning the benefi ts and drawbacks of this approach must wait 
more extensive testing. Nonetheless, our anecdotal experience of using this approach 

Fig. 13. Additional production is requested to correct a warehouse shortfall



System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

with the company we studied is highly suggestive of the benefi ts, limitations and open 
issues of this approach.

Benefi ts

Speed of model construction
The most obvious benefi t of this approach is that models can be created more rapidly 
even for a professional modeler. With predefi ned components available (and locatable), 
modelers do not need to create from scratch the standard formulations they want to 
use. Our rough estimates are that 80–90 percent of most professionally built system 
dynamics models are composed of standard formulations. Currently, modelers have to 
create each formulation anew every time they use it.

Being relieved of this mindless repetition can itself be a time saver. In addition, typo-
graphical errors often complicate the process of recreating a standard formulation from 
scratch. Using guaranteed typo-free pre-built molecules eliminates the considerable 
time even very good modelers spend tracking down the sources of odd behavior gener-
ated by such errors. Further, because the system suggests replacements, a modeler who 
previously was unaware of the existence of a useful molecule will have it automatically 
suggested to him—saving the time that would otherwise be spent needlessly “reinvent-
ing the wheel”.

Conversation-oriented modeling
Conversation normally proceeds much faster than traditional modeling. The increase 
in modeling speed from using our system appears to be about the same order of mag-
nitude as that by which conversation normally outpaces modeling; and, in fact, in 
demonstrations with our research sponsors, the modeling seemed to easily keep pace 
with the conversation around the system. The approach described here promises to 
allow modeling to be used within a group conversation. We suspect that this combina-
tion may alter the nature of managerial conversations, by adding the equivalent of a 
fl ipchart that can “talk back” via the magic of simulation.

Engaging people
We have found that the TUI seems to have a remarkable effect on many people to whom 
we show the system. They are engaged—drawn into it. This engagement effect enhances 
the probability that this system can change the nature of conversations and collabora-
tion in organizations.

Confi dence
Managers who have seen our system rarely ask about the validity of the model being 
constructed, perhaps because they are there while the model is built. Since they know 
what is in the model, they do not wonder if the simulated behavior is due to some hidden 
formulation. As importantly, building models from pre-existing (and previously vetted) 
molecules reduces the fear that model behavior arises from idiosyncratic (or erroneous) 
formulations of a particular modeler.

Speed of learning
It currently takes years for a would-be system dynamics modeler to become truly pro-
fi cient. One reason for this is that, until now, modelers have had to construct their own 
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mental warehouse of robust molecules. Our system externalizes these molecules and 
makes them available through easy navigation. It seems likely that a result may be that 
beginners will fi nd themselves becoming better modelers sooner. Indeed, one of the 
authors taught an MBA course in which the early, primitive hierarchy of molecules was 
introduced to students. The midterm exam required students to create a model of 
a causal diagram within an hour and a half—a task that even advanced doctoral stud-
ents might fi nd diffi cult. In this case, however, every student completed the task 
successfully.

Relaxing the skill requirements
Quite apart from the possibility of shortening the time to become an expert modeler is 
the possibility that this approach will enable non-experts to create models without 
hiring a professional. With predefi ned molecules, an intelligent interface providing 
options for the modeler, and a process (modeling by replacement) that guarantees a 
well-formed model, it is possible that building good models will require less skill. Of 
course, our approach only helps with some of the skills required of a modeler. For 
example, a system dynamics modeler also needs to be able to conceptualize the growing 
model in terms of feedback loops. Nonetheless, it seems almost certain that the approach 
described here will lower, to some extent, the hurdle to modeling.

The cost of modeling
In a prior section we noted that creating even simple system dynamics models can cost 
from $25,000 to $100,000, and large calibrated models can cost an order of magnitude 
more. Speeding the modeling process promises to reduce these costs (though the time 
spent modeling may amount to only 25 percent of the total consultant time).

A more signifi cant saving may come from the automatic storage and cataloguing of 
new molecules. When previous modeling efforts are, in effect, “cannibalized for parts” 
via the automatic generation and cataloguing of molecules, the economics of simulation 
modeling can change radically. As a company continues to use the approach described 
here, the repository of molecules grows, making it more likely that the right molecule 
will be available for the next modeling effort, and thus the cost of modeling continues 
to fall.

Testing levels of aggregation
The approach makes it easier for users to test the level of aggregation of useful SD 
models. Since users start from single stocks and through replacement and specialization 
arrive at the resulting models, they could potentially evaluate the usefulness of further 
disaggregation once a fi rst aggregated model has been completed. Hence users could 
quickly disaggregate models to verify whether the resulting ones would behave differ-
ently and yield more insightful representations of reality.

Limitations

Many of the limitations we have glimpsed through our early experience with this 
approach are the fl ipside of its benefi ts. For example, the fact that molecules accumulate 
means that in the early stages of using our process a company will have access to only 
the generic molecules that come with the system. It is only by using the hierarchy that 



System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

the hierarchy takes on a richness and specifi city to the organization using it. Since our 
approach is most diffi cult to use at the beginning, it may face a hurdle to initial 
adoption.

Clutter
Although accumulating molecules adds to the hierarchy’s richness, it can also create 
clutter—a problem that we have experienced ourselves in our testing and demonstra-
tions of the system. Currently, our system automatically adds to the hierarchy a new 
molecule every time a replacement is made. Some of these molecules are not useful and 
need to be pruned. A solution to this problem is to make cataloguing new molecules 
less automatic. Perhaps the user should be asked if the molecule merits storage.

Need for facilitation
A further concern involves the potential need for facilitation. Although we have noted 
that our approach makes modeling easier, it is not clear how much easier things 
will be.

While we hope that a user will not need to be a professional modeler, our use of the 
tool has always involved people with signifi cant experience in all three underlying 
components: system dynamics, TUI and Process Handbook. We simply do not know 
what minimum level of skill is needed to make productive use of this approach. At least 
initially, it is very likely that use of the system will require someone familiar with 
simulation modeling and with the system itself.

Moleculitis
When we fi rst began advocating the use of molecules, one leader in the system dynam-
ics fi eld worried that it permitted naïve modelers to string together molecule after 
molecule with no real justifi cation. The resulting models would grow ever larger, while 
never delivering any benefi t to anyone. He termed this condition “moleculitis”. As 
mentioned earlier, we have observed a little of this in classes in which we have taught 
the early, primitive set of molecules. However, most students experienced an unprec-
edented jump in modeling capabilities.

The increased ease of building models that this tool provides has raised another 
similar concern among some of our colleagues. Some have suggested that uninformed 
modelers will be able to quickly produce poor, misleading models. In fact, similar fears 
were raised about spreadsheets and iconographic modeling in system dynamics. People 
worried that spreadsheets would let inexperienced programmers create lots of incom-
plete, inaccurate, inconsistent, and otherwise fl awed models. They also worried that 
iconographic modeling made system dynamics models “too accessible to non-experts”, 
leading to poorly conceptualized, feedback-poor, and fl awed models. To some degree 
this has turned out to be true, but most people would agree that the overall benefi ts of 
spreadsheets and iconographic modeling have far outweighed the harm done by the 
fl awed models that people sometimes create.

Early model buy-in
While the ability to develop models quickly allows users to build and test more models, 
it is possible that users may get stuck in the fi rst model that provides a solution to their 
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problem. However, since our approach allows for rapid replacement and specialization 
of different structures, the possibility of being stuck with an initial model is perhaps 
less problematic than in the traditional SD method. Ideally, the system could be used 
to systematically explore and assess a variety of specifi c modeling choices and different 
levels of aggregation.

Need for model simplifi cation
It is possible that large complicated models may result from the rapid replacement and 
specialization of different molecules. While “moleculitis” also leads to large, compli-
cated models, here the resulting models may still be useful but very diffi cult to under-
stand. To improve the quality of the resulting models and understanding of model 
builders (and decision makers), model simplifi cation would be fruitful after the creation 
of models using our approach, as suggested by Saysel and Barlas (2006) for the tradi-
tional system dynamics method.

Analysis
In some modeling disciplines, the real benefi t of modeling comes not from the specifi c 
numerical results of a simulation but from deeper analyses of the models. In system 
dynamics, for example, getting a benefi t usually entails understanding which feedback 
loops generate which patterns of behavior. Traditionally, analysis proceeds at least as 
slowly as creating the model itself. If there were no technology to allow analysis to 
proceed as quickly as a conversation, many of the collaborative and conversational 
advantages of speeding the modeling would be lost. Although we have not yet combined 
this capability with the other components of the system, our simulation engine today 
incorporates a new method of model analysis that automatically suggests which feed-
back loops are most important to a particular pattern of model behavior (Perez-Arriaga, 
1981; Forrester, 1982; Gonçalves et al., 2000). Our hope is that when combined with the 
other components this new method will provide a sizeable speedup in model analysis 
as well.

Open issues

An open issue to be explored in future research deals with the applicability of our 
approach to different knowledge domains. We chose to do our initial exploration of 
“construction by replacement” in the domain of supply chain management because we 
wanted to understand how the approach would work in a relatively bounded and well-
understood setting. In this sense, we chose an “easy” domain for our initial explora-
tions, but we believe that there are a number of other areas that have been extensively 
studied in system dynamics (e.g., project management) and that would be equally easy 
domains in which to apply this approach. Moreover, several classic system dynamics 
models (such as the capital growth model) could be readily constructed by replacement 
from the taxonomy we presented here. Hybrid models including agents, genetic algo-
rithms, and other methodologies may also be modeled using our approach, but further 
research is required to show examples of its applicability.

While we cannot guarantee that our approach will be easily transferable to different 
knowledge domains, counter-examples (if they exist) would be extremely helpful in 
understanding the limitations of the approach. We have tried ourselves to fi nd such 



System Dynamics Review

Copyright © 2010 John Wiley & Sons, Ltd. Syst. Dyn. Rev. (2010)
DOI: 10.1002/sdr

counter-examples, but we were not successful. Based on this experience, our intuition 
suggests that fi nding counter-examples would be diffi cult, but it would be desirable in 
future work (ours or others’) to be able to specify this intuition and if possible formulate 
it as a proof.

Conclusion

We have seen in this paper how the approach of constructing simulation models by 
successively replacing parts of predefi ned molecules with more specialized molecules 
has the potential to substantially improve the cost, quality, and usefulness of simulation 
modeling. In our work to date with applying this approach, we have developed a hier-
archy of increasingly specialized simulation molecules for system dynamics models of 
supply chains. We believe that this same general approach can also be used with other 
modeling disciplines besides system dynamics, but further work is needed to demon-
strate this concretely. In general, we hope that the work reported here will stimulate 
others to further develop this approach and apply it more broadly to many kinds of 
simulation models.

Notes

1. The primary organizing principle for the class hierarchy in most object-oriented pro-
grams is implementation inheritance, an effi cient strategy for programmers. In contrast, 
our molecule hierarchy strictly enforces replacement, an effi cient strategy for compo-
nent users.

2. A DrainToZero is a stock whose outfl ow is equal to some desiredOutfl ow as long as that 
outfl ow will not cause the stock to fall below zero in the next solution interval. Shipping 
might be defi ned as the minimum of demand or the outfl ow that will empty the stock

in a single simulated instant (i.e.,  a single “dt”): shipping
finishedChips

t
demand= ⎛

⎝
⎞
⎠min ,

d
.
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